Rapid and sensitive melamine detection via paper-based surface-enhanced Raman scattering substrate: Plasma-assisted in situ growth of closely packed gold nanoparticles on cellulose paper

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Ba-Thong Trinh , Rashida Akter , Hanjun Cho , Oleksii Omelianovych , Kwanghyeon Jo , Hongki Kim , Taejoon Kang , Huu-Quang Nguyen , Jaebeom Lee , Kwanyong Seo , Ho-Suk Choi , Ilsun Yoon
{"title":"Rapid and sensitive melamine detection via paper-based surface-enhanced Raman scattering substrate: Plasma-assisted in situ growth of closely packed gold nanoparticles on cellulose paper","authors":"Ba-Thong Trinh ,&nbsp;Rashida Akter ,&nbsp;Hanjun Cho ,&nbsp;Oleksii Omelianovych ,&nbsp;Kwanghyeon Jo ,&nbsp;Hongki Kim ,&nbsp;Taejoon Kang ,&nbsp;Huu-Quang Nguyen ,&nbsp;Jaebeom Lee ,&nbsp;Kwanyong Seo ,&nbsp;Ho-Suk Choi ,&nbsp;Ilsun Yoon","doi":"10.1016/j.apsadv.2025.100717","DOIUrl":null,"url":null,"abstract":"<div><div>Cellulose-paper-type surface-enhanced Raman scattering (SERS) substrates have shown promise for constructing economical high-performance molecular sensors. However, conventional paper-based SERS substrate fabrication methods are complex. Therefore, in this study, dry plasma reduction (DPR) – a simple and green process – was tailored to develop a paper-based SERS substrate featuring Au-nanoparticle (AuNP)-impregnated cellulose fiber surfaces. Au ions pre-adsorbed on fiber surfaces were reduced by abundant injected electrons and grown into AuNPs by high-energy Ar-ion bombardment during DPR. Fiber surfaces of the AuNP–cellulose paper, enriched with AuNPs having nanometer-scale gaps and SERS hotspots, exhibited broadband absorption and a large SERS enhancement factor of 1.7 × 10<sup>7</sup>. The SERS sensitivity of the AuNP–cellulose paper was leveraged to realize label-free sensing of melamine, an illegally added milk contaminant. The AuNP–cellulose paper not only exhibited a low detection limit (23 nM (2.9 ppb)) for melamine, adulterated in milk, after sample pretreatments but also enabled rapid detection of 0.2 ppm melamine in formula and low-fat milk within 30 s without any pretreatments, with the supports of principal component analysis (PCA) method. The AuNP–cellulose paper, cost-effective and permitting low-ppb-level label-free molecular sensing, can be a feasible SERS sensor for environmental and biomedical applications.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"26 ","pages":"Article 100717"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cellulose-paper-type surface-enhanced Raman scattering (SERS) substrates have shown promise for constructing economical high-performance molecular sensors. However, conventional paper-based SERS substrate fabrication methods are complex. Therefore, in this study, dry plasma reduction (DPR) – a simple and green process – was tailored to develop a paper-based SERS substrate featuring Au-nanoparticle (AuNP)-impregnated cellulose fiber surfaces. Au ions pre-adsorbed on fiber surfaces were reduced by abundant injected electrons and grown into AuNPs by high-energy Ar-ion bombardment during DPR. Fiber surfaces of the AuNP–cellulose paper, enriched with AuNPs having nanometer-scale gaps and SERS hotspots, exhibited broadband absorption and a large SERS enhancement factor of 1.7 × 107. The SERS sensitivity of the AuNP–cellulose paper was leveraged to realize label-free sensing of melamine, an illegally added milk contaminant. The AuNP–cellulose paper not only exhibited a low detection limit (23 nM (2.9 ppb)) for melamine, adulterated in milk, after sample pretreatments but also enabled rapid detection of 0.2 ppm melamine in formula and low-fat milk within 30 s without any pretreatments, with the supports of principal component analysis (PCA) method. The AuNP–cellulose paper, cost-effective and permitting low-ppb-level label-free molecular sensing, can be a feasible SERS sensor for environmental and biomedical applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信