Oxygen effect on the performance of β-Ga2O3 enhancement mode MOSFETs heteroepitaxially grown on a sapphire

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Yueh-Han Chuang , Fu-Gow Tarntair , Tzu-Wei Wang , Anoop Kumar Singh , Po-Liang Liu , Dong-Sing Wuu , Hao-Chung Kuo , Xiuling Li , Ray-Hua Horng
{"title":"Oxygen effect on the performance of β-Ga2O3 enhancement mode MOSFETs heteroepitaxially grown on a sapphire","authors":"Yueh-Han Chuang ,&nbsp;Fu-Gow Tarntair ,&nbsp;Tzu-Wei Wang ,&nbsp;Anoop Kumar Singh ,&nbsp;Po-Liang Liu ,&nbsp;Dong-Sing Wuu ,&nbsp;Hao-Chung Kuo ,&nbsp;Xiuling Li ,&nbsp;Ray-Hua Horng","doi":"10.1016/j.apsadv.2025.100711","DOIUrl":null,"url":null,"abstract":"<div><div>β-Ga<sub>2</sub>O<sub>3</sub> is regarded as a promising candidate for next-generation high-power devices; however, the impact of material quality on device performance is significant and not yet well understood. In this study, β-Ga<sub>2</sub>O<sub>3</sub> heteroepilayers were grown on c-plane sapphire using metalorganic chemical vapor deposition (MOCVD) at three different O<sub>2</sub> flow rates. Enhancement-mode β-Ga<sub>2</sub>O<sub>3</sub> metal-oxide-semiconductor field-effect transistors (MOSFETs) were then fabricated with a gate-recessed process, incorporating a 5 µm gate field plate structure. Higher O<sub>2</sub> flow rates resulted in increased breakdown voltage. X-ray photoelectron spectroscopy analysis suggests that this improvement is due to reduced oxygen vacancies and minimized Al diffusion from the substrate. First-principle simulations further confirmed this phenomenon.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"26 ","pages":"Article 100711"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

β-Ga2O3 is regarded as a promising candidate for next-generation high-power devices; however, the impact of material quality on device performance is significant and not yet well understood. In this study, β-Ga2O3 heteroepilayers were grown on c-plane sapphire using metalorganic chemical vapor deposition (MOCVD) at three different O2 flow rates. Enhancement-mode β-Ga2O3 metal-oxide-semiconductor field-effect transistors (MOSFETs) were then fabricated with a gate-recessed process, incorporating a 5 µm gate field plate structure. Higher O2 flow rates resulted in increased breakdown voltage. X-ray photoelectron spectroscopy analysis suggests that this improvement is due to reduced oxygen vacancies and minimized Al diffusion from the substrate. First-principle simulations further confirmed this phenomenon.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信