Design of faceted 0D/1D CeO2/ZnO S-scheme heterostructures for solar-driven methanol production

IF 7.5 Q1 CHEMISTRY, PHYSICAL
Hazina Charles, Plassidius J. Chengula, Jiyeon Seo, Caroline Sunyong Lee
{"title":"Design of faceted 0D/1D CeO2/ZnO S-scheme heterostructures for solar-driven methanol production","authors":"Hazina Charles,&nbsp;Plassidius J. Chengula,&nbsp;Jiyeon Seo,&nbsp;Caroline Sunyong Lee","doi":"10.1016/j.apsadv.2025.100781","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient solar-driven conversion of CO<sub>2</sub> into value-added chemical presents a promising approach to addressing climate change and energy scarcity. However, sluggish charge carrier kinetics remain a significant barrier to effective CO<sub>2</sub> photoreduction. In this study, a solvothermal method is employed to synthesize facet-engineered CeO<sub>2</sub>/ZnO nanorod (NRs) S-scheme heterojunctions for the selective photoreduction of CO<sub>2</sub> to methanol under mild conditions. Comprehensive characterization confirms the successful deposition and stability of CeO<sub>2</sub> nanoparticles on the surface of ZnO NRs. Among the synthesized photocatalysts, the composite with 0.2 mmol CeO<sub>2</sub> exhibits the best performance, yielding 111 µmol·g<sup>₋1</sup>, 176 µmol·g<sup>₋1</sup>, 311 µmol·g<sup>₋1</sup>, and 304 µmol·g<sup>₋1</sup>·h<sup>₋1</sup> for H<sub>2</sub>, CO, CH<sub>4</sub>, and CH<sub>3</sub>OH, respectively, with a notable CO<sub>2</sub> selectivity of approximately 89 %. Mechanistic analysis reveals that optimized CeO<sub>2</sub> loading induces an internal electric field, facilitating an S-scheme heterojunction charge-transfer pathway that enhances electron mobility from the ZnO NRs to CeO<sub>2</sub>. In-situ FT-IR spectroscopy further identifies key intermediates (HCOO* and H<sub>3</sub>CO*) involved in the transformation of CO<sub>2</sub> to CH<sub>3</sub>OH. This work demonstrates a novel photocatalyst design that leverages precise CeO<sub>2</sub> loading onto ZnO NRs, offering a promising strategy for efficient and selective CO<sub>2</sub> photoreduction.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"27 ","pages":"Article 100781"},"PeriodicalIF":7.5000,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925000893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient solar-driven conversion of CO2 into value-added chemical presents a promising approach to addressing climate change and energy scarcity. However, sluggish charge carrier kinetics remain a significant barrier to effective CO2 photoreduction. In this study, a solvothermal method is employed to synthesize facet-engineered CeO2/ZnO nanorod (NRs) S-scheme heterojunctions for the selective photoreduction of CO2 to methanol under mild conditions. Comprehensive characterization confirms the successful deposition and stability of CeO2 nanoparticles on the surface of ZnO NRs. Among the synthesized photocatalysts, the composite with 0.2 mmol CeO2 exhibits the best performance, yielding 111 µmol·g₋1, 176 µmol·g₋1, 311 µmol·g₋1, and 304 µmol·g₋1·h₋1 for H2, CO, CH4, and CH3OH, respectively, with a notable CO2 selectivity of approximately 89 %. Mechanistic analysis reveals that optimized CeO2 loading induces an internal electric field, facilitating an S-scheme heterojunction charge-transfer pathway that enhances electron mobility from the ZnO NRs to CeO2. In-situ FT-IR spectroscopy further identifies key intermediates (HCOO* and H3CO*) involved in the transformation of CO2 to CH3OH. This work demonstrates a novel photocatalyst design that leverages precise CeO2 loading onto ZnO NRs, offering a promising strategy for efficient and selective CO2 photoreduction.
用于太阳能驱动甲醇生产的0D/1D CeO2/ZnO s -方案异质结构设计
太阳能驱动的二氧化碳高效转化为增值化学品为解决气候变化和能源短缺问题提供了一种有希望的方法。然而,缓慢的载流子动力学仍然是有效的CO2光还原的一个重要障碍。在本研究中,采用溶剂热法合成了表面工程CeO2/ZnO纳米棒(NRs) s -方案异质结,用于在温和条件下选择性光还原CO2为甲醇。综合表征证实了CeO2纳米颗粒在ZnO核磁共振表面的成功沉积和稳定性。在所合成的光催化剂中,以0.2 mmol CeO2为催化剂的光催化剂性能最好,对H2、CO、CH4和CH3OH的光催化剂收率分别为111、176、311和304µmol·g剁剁·h剁剁,对CO2的选择性约为89%。机制分析表明,优化的CeO2加载诱导了一个内部电场,促进了S-scheme异质结电荷转移途径,增强了电子从ZnO NRs到CeO2的迁移率。原位FT-IR光谱进一步鉴定了参与CO2转化为CH3OH的关键中间体(HCOO*和H3CO*)。这项工作展示了一种新的光催化剂设计,利用精确的CeO2负载到ZnO NRs上,为高效和选择性的CO2光还原提供了一种有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信