IEEE Open Journal of Vehicular Technology最新文献

筛选
英文 中文
Fairness-Aware Utility Maximization for Multi-UAV-Aided Terrestrial Networks 多无人机辅助地面网络的公平意识效用最大化
IF 5.3
IEEE Open Journal of Vehicular Technology Pub Date : 2024-10-21 DOI: 10.1109/OJVT.2024.3477268
Nishant Gupta;Satyam Agarwal;Aymen Fakhreddine
{"title":"Fairness-Aware Utility Maximization for Multi-UAV-Aided Terrestrial Networks","authors":"Nishant Gupta;Satyam Agarwal;Aymen Fakhreddine","doi":"10.1109/OJVT.2024.3477268","DOIUrl":"https://doi.org/10.1109/OJVT.2024.3477268","url":null,"abstract":"Integrating unmanned aerial vehicles (UAVs) with terrestrial networks can enable high-speed communication in various applications. UAVs can serve as aerial base stations (ABSs), offering several benefits to the existing terrestrial networks, such as enhanced coverage, increased capacity, rapid deployment, and mobile communication support. However, this integration presents various technical challenges, including coordination, interference management, and dynamic allocation of resources. To address these key challenges, in this paper, we maximize the network utility by jointly optimizing the scheduling and cell association, transmit power of all base stations, and ABS deployment locations in the presence of co-channel interference. A two-stage approach is proposed to obtain a solution. In the first stage, we propose a heuristic solution by using the clustering algorithm to determine the initial ABS locations and user scheduling while ignoring the co-channel interference. In the second stage, we utilize the solution obtained in the first part and develop an interference-aware iterative scheme to jointly optimize user scheduling, resource allocation, and ABS placement. Given the non-convex nature of this problem, we employ the successive convex approximation technique to approximate the non-convex objectives and constraints. Numerical results show the proposed approach's insights and effectiveness over other schemes. Specifically, our proposed approach provides an average of 25% improvement over the benchmark schemes.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10726751","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142587652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LiFi for Industry 4.0: Main Features, Implementation and Initial Testing of IEEE Std 802.15.13 工业 4.0 的 LiFi:IEEE 802.15.13 标准的主要功能、实施和初步测试
IF 5.3
IEEE Open Journal of Vehicular Technology Pub Date : 2024-10-16 DOI: 10.1109/OJVT.2024.3481884
Kai Lennert Bober;Anselm Ebmeyer;Falko Dressler;Ronald Freund;Volker Jungnickel
{"title":"LiFi for Industry 4.0: Main Features, Implementation and Initial Testing of IEEE Std 802.15.13","authors":"Kai Lennert Bober;Anselm Ebmeyer;Falko Dressler;Ronald Freund;Volker Jungnickel","doi":"10.1109/OJVT.2024.3481884","DOIUrl":"https://doi.org/10.1109/OJVT.2024.3481884","url":null,"abstract":"As industrial communication continues to evolve to increase flexibility through wireless communication, networked optical wireless communication (OWC), also known as LiFi, has emerged as a promising candidate technology due to its unlicensed spectrum and relatively deterministic propagation. The inherent containment of light improves security, enables dense cellular networks with spatial reuse, and results in reduced sporadic interference while providing high-capacity short range communication links to mobile end devices. This paper outlines the features of the new IEEE Std 802.15.13-2013, suitable for industrial OWC, and presents details of our prototype implementation along with initial experiments. The standard specifies deterministic medium access control (MAC), based on dynamic time division multiple access (TDMA), as well as two physical layers (PHYs) for extended range and robustness, and for spectral efficiency, respectively. Our prototype includes a central coordinator, implemented entirely in software, running on commodity server hardware. It connects to distributed ceiling-mounted optical wireless frontends via a packet-switched network (Ethernet) and is capable of forming them into adaptive virtual cells on a per-user basis. This approach enhances reliability through multiple-input multiple-output (MIMO) transmission and allows for smooth mobility. We implemented the Pulsed Modulation PHY (PM-PHY) on a commercially available field programmable gate array (FPGA) evaluation board. Initial test results indicate that the PM-PHY supports typical distances of up to 6 m between the ceiling and the mobile device. The MAC achieves deterministic latency values below 4 ms.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10720513","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579107","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Partial Learning-Based Iterative Detection of MIMO Systems 基于部分学习的多输入多输出系统迭代检测
IF 5.3
IEEE Open Journal of Vehicular Technology Pub Date : 2024-10-16 DOI: 10.1109/OJVT.2024.3482008
Abdulaziz Babulghum;Chao Xu;Soon Xin Ng;Mohammed El-Hajjar
{"title":"Partial Learning-Based Iterative Detection of MIMO Systems","authors":"Abdulaziz Babulghum;Chao Xu;Soon Xin Ng;Mohammed El-Hajjar","doi":"10.1109/OJVT.2024.3482008","DOIUrl":"https://doi.org/10.1109/OJVT.2024.3482008","url":null,"abstract":"One of the major challenges in multiple input multiple output (MIMO) system design is the salient trade-off between performance and computational complexity. For instance, the maximum likelihood (Max-L) detection is capable of achieving optimal performance based on exhaustive search, but its exponential computational complexity renders it impractical. By contrast, zero-forcing detection has low computational complexity, while having significantly worse performance compared to that of the Max-L. The recent developments in deep learning (DL) based detection techniques relying on back propagation neural networks (BPNN) constitute promising candidates for the open challenge of the MIMO detection performance versus complexity trade-off. Against this background, in this paper, we propose a novel partial learning (PL) model for MIMO detection with soft-bit decisions that can be incorporated into channel-coded communication systems. More explicitly, the proposed PL model consists of two parts: first, a subset of the transmitted MIMO symbols is detected by the data-driven DL technique and then the detected symbols are removed from the received MIMO signals for the sake of interference cancellation. Afterwards, the classic model-based zero-forcing detector is invoked to detect the remaining symbols at a linear complexity. As a result, near-optimal MIMO performance can be achieved with substantially reduced computational complexity compared to Max-L and BPNN. The proposed solution is adapted to both accept and produce soft information, so that iterative detection can be performed, where the iteration gain is analyzed by extrinsic information transfer (EXIT) charts. Our simulation results demonstrate that the proposed partial learning-based iterative detection is capable of attaining near-Max-L performance while attaining a flexible performance versus complexity trade-off.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10720516","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579186","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decentralized and Asymmetric Multi-Agent Learning in Construction Sites 建筑工地上的分散和非对称多代理学习
IF 5.3
IEEE Open Journal of Vehicular Technology Pub Date : 2024-10-14 DOI: 10.1109/OJVT.2024.3479927
Yakov Miron;Dan Navon;Yuval Goldfracht;Dotan Di Castro;Itzik Klein
{"title":"Decentralized and Asymmetric Multi-Agent Learning in Construction Sites","authors":"Yakov Miron;Dan Navon;Yuval Goldfracht;Dotan Di Castro;Itzik Klein","doi":"10.1109/OJVT.2024.3479927","DOIUrl":"https://doi.org/10.1109/OJVT.2024.3479927","url":null,"abstract":"Multi-agent collaboration involves multiple participants working together in a shared environment to achieve a common goal. These agents share information, divide tasks, and synchronize their actions. Key aspects of multi-agent collaboration include coordination, communication, task allocation, cooperation, adaptation, and decentralization. On construction sites, surface grading is the process of leveling sand piles to increase a specific area's height. There, a bulldozer grades while a dumper allocates sand piles. Our work aims to utilize a multi-agent approach to enable these vehicles to collaborate effectively. To this end, we propose a decentralized and asymmetric multi-agent learning approach for construction sites (DAMALCS). We formulate DAMALCS to reduce expected collisions for operating vehicles. Therefore, we develop two heuristic experts capable of achieving their joint goal optimally, by applying an innovative prioritization method. In this approach, the bulldozer's movements take precedence over the dumper's operations. This enables the dozer to clear the path for the dumper and ensure continuous operation of both vehicles. As heuristics alone are insufficient in real-world scenarios, we utilize them to train AI agents, which proves to be highly effective. We simultaneously train dozer and dumper agents to operate within the same environment, aiming to avoid collisions and optimizing performance in terms of time efficiency and sand volume handling. Our trained agents and heuristics are evaluated in both simulation and real-world lab experiments, testing them under various conditions such as visual noise and localization errors. The results demonstrate that our approach significantly reduces collision rates for these vehicles.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10715664","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142579185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Software-Defined Radio Deployments in UAV-Driven Applications: A Comprehensive Review 无人机应用中的软件定义无线电部署:全面回顾
IF 5.3
IEEE Open Journal of Vehicular Technology Pub Date : 2024-10-09 DOI: 10.1109/OJVT.2024.3477937
Emmanouel T. Michailidis;Konstantinos Maliatsos;Demosthenes Vouyioukas
{"title":"Software-Defined Radio Deployments in UAV-Driven Applications: A Comprehensive Review","authors":"Emmanouel T. Michailidis;Konstantinos Maliatsos;Demosthenes Vouyioukas","doi":"10.1109/OJVT.2024.3477937","DOIUrl":"https://doi.org/10.1109/OJVT.2024.3477937","url":null,"abstract":"During the last few years, Unmanned Aerial Vehicles (UAVs) have increasingly become primary components of various critical civilian and military applications. As technology rapidly evolves, particularly in the realm of Software-Defined Radio (SDR) and Field-Programmable Gate Arrays (FPGAs), advanced communication protocols and signal processing methods are expected to emerge within UAV-based systems. Crucially, UAVs are expected to capitalize on SDR to enhance communication, sensing, data processing, and defense mechanisms. With this perspective in mind, this paper provides a comprehensive up-to-date review of the integration of SDR technology in UAV-based systems, encompassing the latest techniques, methodologies, and challenges. Specifically, this paper examines case studies and real-world implementations of SDR-assisted UAV-based systems across various domains, including communication, security, detection, classification, and localization, elucidating their efficacy, constraints, and areas for potential improvement. Through this review, valuable insights are offered to researchers, engineers, and practitioners interested in harnessing the synergies between SDR and UAV technologies to address the evolving requirements of contemporary applications and pave the path for future innovations in the field.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10713191","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bidirectional Charging Hubs in the Electric Vehicle Retail Landscape: Opportunities and Challenges for the U.K. Case 电动汽车零售业中的双向充电枢纽:英国案例的机遇与挑战
IF 5.3
IEEE Open Journal of Vehicular Technology Pub Date : 2024-10-03 DOI: 10.1109/OJVT.2024.3474426
I. Safak Bayram;Xiang Shi
{"title":"Bidirectional Charging Hubs in the Electric Vehicle Retail Landscape: Opportunities and Challenges for the U.K. Case","authors":"I. Safak Bayram;Xiang Shi","doi":"10.1109/OJVT.2024.3474426","DOIUrl":"https://doi.org/10.1109/OJVT.2024.3474426","url":null,"abstract":"In light of governmental policies phasing out petrol/diesel car sales, the vehicle retail sector is transforming to focus solely on electric vehicles (EVs). Given their available physical space and access to a high volume of EVs, future vehicle retailers are ideally positioned to operate as bidirectional charging hubs. This paper explores the challenges and opportunities this presents for EV retailers. Current EV battery technology is examined, including degradation mechanisms associated with grid-to-vehicle and vehicle-to-everything applications. Next, bidirectional chargers and relevant industry protocols are analyzed in detail. The U.K. energy market's ancillary services are also investigated, with a focus on the specific performance requirements of different market types. Leveraging publicly available datasets from six mainstream EV models, the suitability of various EV fleets for each market is assessed. Finally, recent V2G projects are analyzed, and the broader societal implications of bidirectional charging hubs are discussed.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705088","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142452771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preamble Arbitration Rule and Interference Suppression-Based Polling Medium Access Control for In-Vehicle Ultra-Wideband Networks 车载超宽带网络的前导码仲裁规则和基于干扰抑制的轮询介质访问控制
IF 5.3
IEEE Open Journal of Vehicular Technology Pub Date : 2024-10-03 DOI: 10.1109/OJVT.2024.3474430
Makoto Okuhara;Nobuyuki Kurioka;Shigeki Mitoh;Patrick Finnerty;Chikara Ohta
{"title":"Preamble Arbitration Rule and Interference Suppression-Based Polling Medium Access Control for In-Vehicle Ultra-Wideband Networks","authors":"Makoto Okuhara;Nobuyuki Kurioka;Shigeki Mitoh;Patrick Finnerty;Chikara Ohta","doi":"10.1109/OJVT.2024.3474430","DOIUrl":"https://doi.org/10.1109/OJVT.2024.3474430","url":null,"abstract":"This paper introduces a preamble arbitration rule and interference suppression (PARIS) method for ultra-wideband (UWB) in-vehicle networks. Advancements in the automotive technology have led to increased reliance on wire harnesses, resulting in higher costs, electronic integration challenges, and adverse environmental effects. To address these problems, we explored the use of UWB wireless networks, which are characterized by low transmission power and superior signal penetration capabilities. A significant challenge associated with implementing UWB in automotive environments is the increased frame error rate (FER) caused by UWB interference. Our experiments indicate that vehicles equipped with identical UWB networks exhibit an FER of approximately 6% when positioned closely. This level of FER is problematic for automotive applications, where reliable communication is paramount. To mitigate this problem, we developed an PARIS communication algorithm that is robust against interference. As identified in this study, PARIS leverages two key characteristics of UWB. First, it prioritizes the timing of signal reception over radio signal power, enhancing interference suppression by activating the receiver at the optimal moment before the desired frame arrives, thereby minimizing data loss. Second, the algorithm exploits the hierarchical nature of preamble codes in simultaneously received frames, reducing data loss rate to the order of \u0000<inline-formula><tex-math>$10^{-5}$</tex-math></inline-formula>\u0000 by prioritizing frames from critical communication devices based on the preamble code hierarchy. Implementing the UWB-based PARIS method in wireless vehicle networks can reduce the weight of the wire harnesses by approximately 20%, offering a promising solution to the challenges posed by traditional wiring systems.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10705070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cloud-Edge Collaboration Control Strategy for Electric Vehicle Aggregators Participating in Frequency and Voltage Regulation 参与频率和电压调节的电动汽车聚合器的云端协作控制策略
IF 5.3
IEEE Open Journal of Vehicular Technology Pub Date : 2024-09-30 DOI: 10.1109/OJVT.2024.3471252
Xianhao Lu;Longjun Wang
{"title":"Cloud-Edge Collaboration Control Strategy for Electric Vehicle Aggregators Participating in Frequency and Voltage Regulation","authors":"Xianhao Lu;Longjun Wang","doi":"10.1109/OJVT.2024.3471252","DOIUrl":"https://doi.org/10.1109/OJVT.2024.3471252","url":null,"abstract":"With the increasing integration of renewable energy into power grids, ensuring the stability and reliability of power grids has become crucial. The intermittency of renewable energy poses a challenge for the frequency and voltage control of power grids. As an adjustable flexible load, electric vehicles (EVs) have emerged as an important solution for grid frequency and voltage control. A joint control and optimization strategy for electric vehicle aggregators (EVAs) to participate in grid frequency and voltage regulation based on a cloud-edge collaborative hierarchical scheduling architecture is proposed, and a multi-timescale EV charging pile cluster (EVC) scheduling model is established with the goal of maximizing the EVA profit. The strategy and model are grounded in the ancillary service market process. The EVA forecasts and optimizes to declare the active and reactive power capacities of the EVC to the market before the day and hour and controls the EVC to respond quickly and accurately to the frequency and voltage regulation instructions in the real-time stage. The methods of rolling optimization, model predictive control, evaluation of the feasible energy region and real-time capacity correction are adopted to coordinate the active and reactive power of EVC. The feasibility and effectiveness of the strategy are verified by an example, which provides an important reference for EVAs participating in power grid interactions.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10700604","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Physics-Informed Cold-Start Capability for xEV Charging Recommender System 用于 xEV 充电推荐系统的物理信息冷启动能力
IF 5.3
IEEE Open Journal of Vehicular Technology Pub Date : 2024-09-27 DOI: 10.1109/OJVT.2024.3469577
Raik Orbay;Aditya Pratap Singh;Johannes Emilsson;Michele Becciani;Evelina Wikner;Victor Gustafson;Torbjörn Thiringer
{"title":"A Physics-Informed Cold-Start Capability for xEV Charging Recommender System","authors":"Raik Orbay;Aditya Pratap Singh;Johannes Emilsson;Michele Becciani;Evelina Wikner;Victor Gustafson;Torbjörn Thiringer","doi":"10.1109/OJVT.2024.3469577","DOIUrl":"https://doi.org/10.1109/OJVT.2024.3469577","url":null,"abstract":"An effortless charging experience will boost electric vehicle (xEV) adoption and assure driver satisfaction. Tailoring the charging experience incorporating smart algorithms introduces an exciting set of development opportunities. The goal of a smart charging algorithm is to lay down an accurate estimation of charging power needs for each user. As recommender systems (RS) are frequently used for tailored services and products, a novel RS based approach is developed in this study. Based on a collaborative-filtering principle, an RS agent will customize charging power transient prioritizing the physical principles governing the battery system, correlated to customer preferences. However, parallel to other RS applications, a collaborative-filtering for charging power transient design may suffer from the cold-start problem. This paper thus aims to prescribe a remedy for the cold-start problem encountered in RS specifically for charging power transient design. The RS is cold-started based on multiphysical modelling, combined with customer driving styles. It is shown that using 7 fundamental charging power transients would capture about 70% of a set of representative charging power transient population. Matching a unsupervised learning based clustering pipeline for 7 possible customer driving styles, an RS agent can prescribe 7 charging power transients automatically and cold-start the RS until more data is available.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10697286","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142450898","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Verifiable Discrete Trust Model (VDTM) Using Congruent Federated Learning (CFL) for Social Internet of Vehicles 使用同义联合学习(CFL)的可验证离散信任模型(VDTM)用于社交车联网
IF 5.3
IEEE Open Journal of Vehicular Technology Pub Date : 2024-09-25 DOI: 10.1109/OJVT.2024.3468164
Mohammed Mujib Alshahrani
{"title":"A Verifiable Discrete Trust Model (VDTM) Using Congruent Federated Learning (CFL) for Social Internet of Vehicles","authors":"Mohammed Mujib Alshahrani","doi":"10.1109/OJVT.2024.3468164","DOIUrl":"https://doi.org/10.1109/OJVT.2024.3468164","url":null,"abstract":"The Social Internet of Vehicles (SIoV) connects cars that are nearby and uses different types of infrastructure to connect people with shared interests. A public, open tool, such as the cloud, is used to share information about things like tolls, traffic, weather, and more. When people share social information, the risks of data leaks and trustworthiness are still not dealt with. This article presents a Verifiable Discrete Trust Model (VDTM) that uses Congruent Federated Learning (CFL) to make social information-sharing tools more trustworthy. The proposed trust model ensures pre- and post-sharing trust verification of the communicating vehicles. Trust is verified as a global identity factor due to the inconsistency between sharing occasions. The CFL is accountable of checking forward and backward trust between the times before and after sharing. In this learning, the congruency is zero-variance detection on both occasions of information sharing. The learning does this check over and over to make sure there is discrete trust in information-sharing times between vehicles, between vehicles and infrastructure, or between vehicles and platforms. The identified trust is valid within the specific interval broadcasted during request initializations. Depending on the trust level, the sharing interval is authenticated using forward and reverse private keys. Therefore, the vehicle's trust results from the maximum information integrity observed in the pre-and post-sharing interval. For the maximum vehicles considered, the proposed model leverages the trust index by 8%, information sharing by 7.15%, and reducing key overhead by 9.35% and time consumption by 7.76%.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":null,"pages":null},"PeriodicalIF":5.3,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10693441","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信