两层解码异步无小区mimo上行链路性能分析

IF 4.8 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Siran Xu;Xiaomin Chen;Qiang Sun;Jiayi Zhang
{"title":"两层解码异步无小区mimo上行链路性能分析","authors":"Siran Xu;Xiaomin Chen;Qiang Sun;Jiayi Zhang","doi":"10.1109/OJVT.2025.3606229","DOIUrl":null,"url":null,"abstract":"In practical cell-free (CF) massive multiple-input multiple-output (mMIMO) networks, asynchronous reception occurs due to distributed and low-cost access points (APs), where the signals arrive at each AP at different time. In this paper, we investigate uplink (UL) spectral efficiency (SE) of asynchronous CF mMIMO with spatially correlated Rician fading channel. On the basis of the availability of prior information at APs, we derive the phase-aware minimum mean square error (MMSE) and non-perceptual linear MMSE (LMMSE) estimators. To mitigate the inter-user interference, we consider a two-layer decoding method in UL transmission. For the first-layer decoding, maximum ratio (MR) precoding is employed, while the large-scale fading decoding (LSFD) method is utilized in the second-layer decoding. Meanwhile, we consider the scenario in CF mMIMO where there is a large number of user equipment (UE), resulting in high computational complexity. To address this challenge, scalable CF mMIMO (SCF-mMIMO) architecture is proposed. On the basis of MMSE and LMMSE estimators, the novel low complexity partial MMSE (P-MMSE) detector and partial LMMSE (P-LMMSE) detector are proposed for centralized combining. For distributed combining, we also proposed the novel local partial MMSE (LP-MMSE) detector and local partial LMMSE (LP-LMMSE) detector. Numerical results demonstrate that LSFD method can enhance UL SE in CF mMIMO. Furthermore, the impact of performance loss resulting from the absence of phase information is contingent upon the length of pilot. It is minimal when pilot contamination is low. Finally, the simulation results demonstrate that the SE of the proposed detectors closely approximate the optimal combining technique for both distributed and centralized combing. It is important to note that the proposed detectors preserve performance while significantly lowering complexity.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2494-2508"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11150737","citationCount":"0","resultStr":"{\"title\":\"Uplink Performance Analysis of Asynchronous Cell-Free mMIMO With Two-Layer Decoding\",\"authors\":\"Siran Xu;Xiaomin Chen;Qiang Sun;Jiayi Zhang\",\"doi\":\"10.1109/OJVT.2025.3606229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In practical cell-free (CF) massive multiple-input multiple-output (mMIMO) networks, asynchronous reception occurs due to distributed and low-cost access points (APs), where the signals arrive at each AP at different time. In this paper, we investigate uplink (UL) spectral efficiency (SE) of asynchronous CF mMIMO with spatially correlated Rician fading channel. On the basis of the availability of prior information at APs, we derive the phase-aware minimum mean square error (MMSE) and non-perceptual linear MMSE (LMMSE) estimators. To mitigate the inter-user interference, we consider a two-layer decoding method in UL transmission. For the first-layer decoding, maximum ratio (MR) precoding is employed, while the large-scale fading decoding (LSFD) method is utilized in the second-layer decoding. Meanwhile, we consider the scenario in CF mMIMO where there is a large number of user equipment (UE), resulting in high computational complexity. To address this challenge, scalable CF mMIMO (SCF-mMIMO) architecture is proposed. On the basis of MMSE and LMMSE estimators, the novel low complexity partial MMSE (P-MMSE) detector and partial LMMSE (P-LMMSE) detector are proposed for centralized combining. For distributed combining, we also proposed the novel local partial MMSE (LP-MMSE) detector and local partial LMMSE (LP-LMMSE) detector. Numerical results demonstrate that LSFD method can enhance UL SE in CF mMIMO. Furthermore, the impact of performance loss resulting from the absence of phase information is contingent upon the length of pilot. It is minimal when pilot contamination is low. Finally, the simulation results demonstrate that the SE of the proposed detectors closely approximate the optimal combining technique for both distributed and centralized combing. It is important to note that the proposed detectors preserve performance while significantly lowering complexity.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"2494-2508\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11150737\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11150737/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11150737/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在实际的无蜂窝(CF)大规模多输入多输出(mMIMO)网络中,由于分布式和低成本接入点(AP),信号在不同时间到达每个AP,因此会发生异步接收。本文研究了具有空间相关梯度衰落信道的异步CF mimo的上行链路(UL)频谱效率。在ap先验信息可用性的基础上,我们导出了相位感知最小均方误差(MMSE)和非感知线性MMSE (LMMSE)估计。为了减少用户间的干扰,我们考虑在UL传输中采用两层解码方法。第一层译码采用MR (maximum ratio)预编码,第二层译码采用大规模衰落译码方法。同时,我们考虑了CF mMIMO中存在大量用户设备(UE),导致计算复杂度较高的场景。为了解决这一挑战,提出了可扩展的CF-mMIMO (SCF-mMIMO)架构。在MMSE和LMMSE估计器的基础上,提出了一种新的低复杂度部分MMSE (P-MMSE)检测器和部分LMMSE (P-LMMSE)检测器进行集中组合。对于分布式组合,我们还提出了新的局部偏MMSE (LP-MMSE)检测器和局部偏LMMSE (LP-LMMSE)检测器。数值结果表明,LSFD方法可以提高CF mimo中的UL SE。此外,相位信息缺失导致的性能损失的影响取决于导频的长度。当飞行员污染较低时,它是最小的。最后,仿真结果表明,所提检测器的SE近似于分布式和集中式精梳的最优组合技术。值得注意的是,建议的检测器在保持性能的同时显著降低了复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uplink Performance Analysis of Asynchronous Cell-Free mMIMO With Two-Layer Decoding
In practical cell-free (CF) massive multiple-input multiple-output (mMIMO) networks, asynchronous reception occurs due to distributed and low-cost access points (APs), where the signals arrive at each AP at different time. In this paper, we investigate uplink (UL) spectral efficiency (SE) of asynchronous CF mMIMO with spatially correlated Rician fading channel. On the basis of the availability of prior information at APs, we derive the phase-aware minimum mean square error (MMSE) and non-perceptual linear MMSE (LMMSE) estimators. To mitigate the inter-user interference, we consider a two-layer decoding method in UL transmission. For the first-layer decoding, maximum ratio (MR) precoding is employed, while the large-scale fading decoding (LSFD) method is utilized in the second-layer decoding. Meanwhile, we consider the scenario in CF mMIMO where there is a large number of user equipment (UE), resulting in high computational complexity. To address this challenge, scalable CF mMIMO (SCF-mMIMO) architecture is proposed. On the basis of MMSE and LMMSE estimators, the novel low complexity partial MMSE (P-MMSE) detector and partial LMMSE (P-LMMSE) detector are proposed for centralized combining. For distributed combining, we also proposed the novel local partial MMSE (LP-MMSE) detector and local partial LMMSE (LP-LMMSE) detector. Numerical results demonstrate that LSFD method can enhance UL SE in CF mMIMO. Furthermore, the impact of performance loss resulting from the absence of phase information is contingent upon the length of pilot. It is minimal when pilot contamination is low. Finally, the simulation results demonstrate that the SE of the proposed detectors closely approximate the optimal combining technique for both distributed and centralized combing. It is important to note that the proposed detectors preserve performance while significantly lowering complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信