Saddam Hussain;Ali Tufail;Haji Awg Abdul Ghani Naim;Muhammad Asghar Khan;Gordana Barb
{"title":"基于资源受限ndn的车联网轻量级代理签名方案","authors":"Saddam Hussain;Ali Tufail;Haji Awg Abdul Ghani Naim;Muhammad Asghar Khan;Gordana Barb","doi":"10.1109/OJVT.2025.3606652","DOIUrl":null,"url":null,"abstract":"Named Data Networking (NDN) is considered a future architecture for content distribution in the Internet of Vehicles (IoV). The primary principles of NDN, which include naming and in-network caching, are perfectly aligned with the IoV requirements for time and location independence. Despite significant research efforts, full-scale deployment remains limited due to ongoing concerns regarding trust, safety, and security within the IoV network. Moreover, traditional security algorithms proposed for IoV are complex, with high computational demands that challenge the strict real-time constraints. To minimize the computational overhead of vehicles, we proposed an RSU-empowered proxy signature scheme for NDN-based IoV. The security of the proposed scheme is proven to be Existentially Unforgeable against Adaptive Chosen-Message Attacks (EU-ACMA) under the Random Oracle Model (ROM), considering the hardness of the Hyperelliptic Curve Discrete Logarithm Problem (HCDLP). A performance analysis, which considers both computation time and communication overhead, shows that the proposed scheme effectively minimizes these factors. Besides, we applied the Multi-Criteria Decision-Making (MCDM) technique, namely Evaluation based on Distance from Average Solution (EDAS), to meet the particular need to prioritize data in IoV. The findings show that the proposed scheme performs better than those in the related literature.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2607-2626"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11152359","citationCount":"0","resultStr":"{\"title\":\"A Lightweight Proxy Signature Scheme for Resource-Constrained NDN-Based Internet of Vehicles\",\"authors\":\"Saddam Hussain;Ali Tufail;Haji Awg Abdul Ghani Naim;Muhammad Asghar Khan;Gordana Barb\",\"doi\":\"10.1109/OJVT.2025.3606652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Named Data Networking (NDN) is considered a future architecture for content distribution in the Internet of Vehicles (IoV). The primary principles of NDN, which include naming and in-network caching, are perfectly aligned with the IoV requirements for time and location independence. Despite significant research efforts, full-scale deployment remains limited due to ongoing concerns regarding trust, safety, and security within the IoV network. Moreover, traditional security algorithms proposed for IoV are complex, with high computational demands that challenge the strict real-time constraints. To minimize the computational overhead of vehicles, we proposed an RSU-empowered proxy signature scheme for NDN-based IoV. The security of the proposed scheme is proven to be Existentially Unforgeable against Adaptive Chosen-Message Attacks (EU-ACMA) under the Random Oracle Model (ROM), considering the hardness of the Hyperelliptic Curve Discrete Logarithm Problem (HCDLP). A performance analysis, which considers both computation time and communication overhead, shows that the proposed scheme effectively minimizes these factors. Besides, we applied the Multi-Criteria Decision-Making (MCDM) technique, namely Evaluation based on Distance from Average Solution (EDAS), to meet the particular need to prioritize data in IoV. The findings show that the proposed scheme performs better than those in the related literature.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"2607-2626\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11152359\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11152359/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11152359/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Lightweight Proxy Signature Scheme for Resource-Constrained NDN-Based Internet of Vehicles
Named Data Networking (NDN) is considered a future architecture for content distribution in the Internet of Vehicles (IoV). The primary principles of NDN, which include naming and in-network caching, are perfectly aligned with the IoV requirements for time and location independence. Despite significant research efforts, full-scale deployment remains limited due to ongoing concerns regarding trust, safety, and security within the IoV network. Moreover, traditional security algorithms proposed for IoV are complex, with high computational demands that challenge the strict real-time constraints. To minimize the computational overhead of vehicles, we proposed an RSU-empowered proxy signature scheme for NDN-based IoV. The security of the proposed scheme is proven to be Existentially Unforgeable against Adaptive Chosen-Message Attacks (EU-ACMA) under the Random Oracle Model (ROM), considering the hardness of the Hyperelliptic Curve Discrete Logarithm Problem (HCDLP). A performance analysis, which considers both computation time and communication overhead, shows that the proposed scheme effectively minimizes these factors. Besides, we applied the Multi-Criteria Decision-Making (MCDM) technique, namely Evaluation based on Distance from Average Solution (EDAS), to meet the particular need to prioritize data in IoV. The findings show that the proposed scheme performs better than those in the related literature.