基于资源受限ndn的车联网轻量级代理签名方案

IF 4.8 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Saddam Hussain;Ali Tufail;Haji Awg Abdul Ghani Naim;Muhammad Asghar Khan;Gordana Barb
{"title":"基于资源受限ndn的车联网轻量级代理签名方案","authors":"Saddam Hussain;Ali Tufail;Haji Awg Abdul Ghani Naim;Muhammad Asghar Khan;Gordana Barb","doi":"10.1109/OJVT.2025.3606652","DOIUrl":null,"url":null,"abstract":"Named Data Networking (NDN) is considered a future architecture for content distribution in the Internet of Vehicles (IoV). The primary principles of NDN, which include naming and in-network caching, are perfectly aligned with the IoV requirements for time and location independence. Despite significant research efforts, full-scale deployment remains limited due to ongoing concerns regarding trust, safety, and security within the IoV network. Moreover, traditional security algorithms proposed for IoV are complex, with high computational demands that challenge the strict real-time constraints. To minimize the computational overhead of vehicles, we proposed an RSU-empowered proxy signature scheme for NDN-based IoV. The security of the proposed scheme is proven to be Existentially Unforgeable against Adaptive Chosen-Message Attacks (EU-ACMA) under the Random Oracle Model (ROM), considering the hardness of the Hyperelliptic Curve Discrete Logarithm Problem (HCDLP). A performance analysis, which considers both computation time and communication overhead, shows that the proposed scheme effectively minimizes these factors. Besides, we applied the Multi-Criteria Decision-Making (MCDM) technique, namely Evaluation based on Distance from Average Solution (EDAS), to meet the particular need to prioritize data in IoV. The findings show that the proposed scheme performs better than those in the related literature.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2607-2626"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11152359","citationCount":"0","resultStr":"{\"title\":\"A Lightweight Proxy Signature Scheme for Resource-Constrained NDN-Based Internet of Vehicles\",\"authors\":\"Saddam Hussain;Ali Tufail;Haji Awg Abdul Ghani Naim;Muhammad Asghar Khan;Gordana Barb\",\"doi\":\"10.1109/OJVT.2025.3606652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Named Data Networking (NDN) is considered a future architecture for content distribution in the Internet of Vehicles (IoV). The primary principles of NDN, which include naming and in-network caching, are perfectly aligned with the IoV requirements for time and location independence. Despite significant research efforts, full-scale deployment remains limited due to ongoing concerns regarding trust, safety, and security within the IoV network. Moreover, traditional security algorithms proposed for IoV are complex, with high computational demands that challenge the strict real-time constraints. To minimize the computational overhead of vehicles, we proposed an RSU-empowered proxy signature scheme for NDN-based IoV. The security of the proposed scheme is proven to be Existentially Unforgeable against Adaptive Chosen-Message Attacks (EU-ACMA) under the Random Oracle Model (ROM), considering the hardness of the Hyperelliptic Curve Discrete Logarithm Problem (HCDLP). A performance analysis, which considers both computation time and communication overhead, shows that the proposed scheme effectively minimizes these factors. Besides, we applied the Multi-Criteria Decision-Making (MCDM) technique, namely Evaluation based on Distance from Average Solution (EDAS), to meet the particular need to prioritize data in IoV. The findings show that the proposed scheme performs better than those in the related literature.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"2607-2626\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11152359\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11152359/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11152359/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

命名数据网络(NDN)被认为是车联网(IoV)内容分发的未来架构。NDN的主要原则,包括命名和网络内缓存,完全符合车联网对时间和位置独立性的要求。尽管进行了大量的研究工作,但由于对物联网网络中的信任、安全和保障的担忧,全面部署仍然有限。此外,针对车联网提出的传统安全算法复杂,计算量大,挑战了严格的实时性约束。为了最大限度地减少车辆的计算开销,我们提出了一种基于ndn的基于rsu的代理签名方案。考虑到超椭圆曲线离散对数问题(HCDLP)的难度,在随机Oracle模型(ROM)下证明了该方案在自适应选择消息攻击(EU-ACMA)下的存在不可伪造性。同时考虑计算时间和通信开销的性能分析表明,该方案有效地减小了这些因素。此外,我们应用了多准则决策(MCDM)技术,即基于平均解决方案距离的评估(EDAS),以满足车联网中数据优先级的特殊需求。研究结果表明,所提出的方案优于相关文献中的方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Lightweight Proxy Signature Scheme for Resource-Constrained NDN-Based Internet of Vehicles
Named Data Networking (NDN) is considered a future architecture for content distribution in the Internet of Vehicles (IoV). The primary principles of NDN, which include naming and in-network caching, are perfectly aligned with the IoV requirements for time and location independence. Despite significant research efforts, full-scale deployment remains limited due to ongoing concerns regarding trust, safety, and security within the IoV network. Moreover, traditional security algorithms proposed for IoV are complex, with high computational demands that challenge the strict real-time constraints. To minimize the computational overhead of vehicles, we proposed an RSU-empowered proxy signature scheme for NDN-based IoV. The security of the proposed scheme is proven to be Existentially Unforgeable against Adaptive Chosen-Message Attacks (EU-ACMA) under the Random Oracle Model (ROM), considering the hardness of the Hyperelliptic Curve Discrete Logarithm Problem (HCDLP). A performance analysis, which considers both computation time and communication overhead, shows that the proposed scheme effectively minimizes these factors. Besides, we applied the Multi-Criteria Decision-Making (MCDM) technique, namely Evaluation based on Distance from Average Solution (EDAS), to meet the particular need to prioritize data in IoV. The findings show that the proposed scheme performs better than those in the related literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信