基于ID2T的工业V2I网络人工智能入侵检测综合攻击数据集生成

IF 4.8 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Prinkle Sharma;Jaiganesh Anandan;Hong Liu;Jyoti Grover
{"title":"基于ID2T的工业V2I网络人工智能入侵检测综合攻击数据集生成","authors":"Prinkle Sharma;Jaiganesh Anandan;Hong Liu;Jyoti Grover","doi":"10.1109/OJVT.2025.3609149","DOIUrl":null,"url":null,"abstract":"Industrial Vehicle-to-Infrastructure (iV2I) networks are increasingly adopted in settings such as warehouses, construction sites, and smart factories to enhance automation and operational efficiency. However, these systems face growing cybersecurity risks that threaten safety-critical operations. This paper introduces a realistic synthetic dataset created using the ID2T framework, which injects malicious traffic, such as DDoS, PortScan, and memory corruption exploits, into benign communication traces collected from actual iV2I environments. The resulting hybrid dataset, combining synthetic and real-world traffic, enables the supervised training of a Multi-Layer Perceptron (MLP) neural network using 16 meticulously crafted flow-based features. Experimental results demonstrate high detection accuracy under both balanced and threat-specific conditions, validating the effectiveness of ID2T in modeling domain-relevant cyberattack behaviors. In addition to strong classification performance, this work demonstrates how synthetic malicious traffic generation reduces the cost and complexity of cyberattack emulation. The proposed method offers a scalable and reproducible framework for training intrusion detection systems (IDS), highlighting the critical role of Artificial Intelligence (AI) in securing next-generation industrial vehicular networks.","PeriodicalId":34270,"journal":{"name":"IEEE Open Journal of Vehicular Technology","volume":"6 ","pages":"2509-2538"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11159305","citationCount":"0","resultStr":"{\"title\":\"Synthetic Attack Dataset Generation With ID2T for AI-Based Intrusion Detection in Industrial V2I Network\",\"authors\":\"Prinkle Sharma;Jaiganesh Anandan;Hong Liu;Jyoti Grover\",\"doi\":\"10.1109/OJVT.2025.3609149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Industrial Vehicle-to-Infrastructure (iV2I) networks are increasingly adopted in settings such as warehouses, construction sites, and smart factories to enhance automation and operational efficiency. However, these systems face growing cybersecurity risks that threaten safety-critical operations. This paper introduces a realistic synthetic dataset created using the ID2T framework, which injects malicious traffic, such as DDoS, PortScan, and memory corruption exploits, into benign communication traces collected from actual iV2I environments. The resulting hybrid dataset, combining synthetic and real-world traffic, enables the supervised training of a Multi-Layer Perceptron (MLP) neural network using 16 meticulously crafted flow-based features. Experimental results demonstrate high detection accuracy under both balanced and threat-specific conditions, validating the effectiveness of ID2T in modeling domain-relevant cyberattack behaviors. In addition to strong classification performance, this work demonstrates how synthetic malicious traffic generation reduces the cost and complexity of cyberattack emulation. The proposed method offers a scalable and reproducible framework for training intrusion detection systems (IDS), highlighting the critical role of Artificial Intelligence (AI) in securing next-generation industrial vehicular networks.\",\"PeriodicalId\":34270,\"journal\":{\"name\":\"IEEE Open Journal of Vehicular Technology\",\"volume\":\"6 \",\"pages\":\"2509-2538\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11159305\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Open Journal of Vehicular Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11159305/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Vehicular Technology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11159305/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

工业车辆到基础设施(iV2I)网络越来越多地应用于仓库、建筑工地和智能工厂等环境,以提高自动化和运营效率。然而,这些系统面临着日益增长的网络安全风险,威胁着安全关键操作。本文介绍了一个使用ID2T框架创建的真实合成数据集,该数据集将恶意流量(如DDoS、PortScan和内存损坏漏洞)注入到从实际iV2I环境收集的良性通信跟踪中。由此产生的混合数据集结合了合成流量和真实流量,可以使用16个精心制作的基于流量的特征对多层感知器(MLP)神经网络进行监督训练。实验结果表明,在平衡和特定威胁条件下,ID2T都具有较高的检测精度,验证了ID2T在建模领域相关网络攻击行为方面的有效性。除了强大的分类性能外,这项工作还展示了合成恶意流量生成如何降低网络攻击仿真的成本和复杂性。该方法为训练入侵检测系统(IDS)提供了一个可扩展和可重复的框架,突出了人工智能(AI)在保护下一代工业车辆网络中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthetic Attack Dataset Generation With ID2T for AI-Based Intrusion Detection in Industrial V2I Network
Industrial Vehicle-to-Infrastructure (iV2I) networks are increasingly adopted in settings such as warehouses, construction sites, and smart factories to enhance automation and operational efficiency. However, these systems face growing cybersecurity risks that threaten safety-critical operations. This paper introduces a realistic synthetic dataset created using the ID2T framework, which injects malicious traffic, such as DDoS, PortScan, and memory corruption exploits, into benign communication traces collected from actual iV2I environments. The resulting hybrid dataset, combining synthetic and real-world traffic, enables the supervised training of a Multi-Layer Perceptron (MLP) neural network using 16 meticulously crafted flow-based features. Experimental results demonstrate high detection accuracy under both balanced and threat-specific conditions, validating the effectiveness of ID2T in modeling domain-relevant cyberattack behaviors. In addition to strong classification performance, this work demonstrates how synthetic malicious traffic generation reduces the cost and complexity of cyberattack emulation. The proposed method offers a scalable and reproducible framework for training intrusion detection systems (IDS), highlighting the critical role of Artificial Intelligence (AI) in securing next-generation industrial vehicular networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
25
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信