2015 IEEE International Electron Devices Meeting (IEDM)最新文献

筛选
英文 中文
Structural coordination of rigidity with flexibility in gate dielectric films for sub-nm EOT Ge gate stack reliability 亚纳米EOT Ge栅极堆叠可靠性栅介质膜刚性与柔性的结构配合
2015 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2015-12-01 DOI: 10.1109/IEDM.2015.7409698
Cimang Lu, A. Toriumi
{"title":"Structural coordination of rigidity with flexibility in gate dielectric films for sub-nm EOT Ge gate stack reliability","authors":"Cimang Lu, A. Toriumi","doi":"10.1109/IEDM.2015.7409698","DOIUrl":"https://doi.org/10.1109/IEDM.2015.7409698","url":null,"abstract":"This paper reports a gate dielectric film design for reliability-aware as well as scalability conscious gate stacks on Ge. Initially good characteristics of Ge gate stacks do not necessarily guarantee the long-term device reliability. To overcome this big hurdle, we propose a novel concept of the rigidity control in the dielectric films with continuous random network. Ge gate stacks with initially prominent passivation and long term reliability are demonstrated experimentally. This is a new view for achieving the built-in design of gate dielectric film with reliability as well as scalability.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"239 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121145935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Gate-all-around CMOS (InAs n-FET and GaSb p-FET) based on vertically-stacked nanowires on a Si platform, enabled by extremely-thin buffer layer technology and common gate stack and contact modules 基于Si平台上垂直堆叠纳米线的栅极全能CMOS (InAs n-FET和GaSb p-FET),通过极薄缓冲层技术和通用栅极堆叠和触点模块实现
2015 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2015-12-01 DOI: 10.1109/IEDM.2015.7409704
K. Goh, K. Tan, S. Yadav, Annie, S. Yoon, G. Liang, X. Gong, Y. Yeo
{"title":"Gate-all-around CMOS (InAs n-FET and GaSb p-FET) based on vertically-stacked nanowires on a Si platform, enabled by extremely-thin buffer layer technology and common gate stack and contact modules","authors":"K. Goh, K. Tan, S. Yadav, Annie, S. Yoon, G. Liang, X. Gong, Y. Yeo","doi":"10.1109/IEDM.2015.7409704","DOIUrl":"https://doi.org/10.1109/IEDM.2015.7409704","url":null,"abstract":"We report the first demonstration of a novel vertically stacked structure comprising InAs nanowires and GaSb nanowires, enabled by an extremely-thin (sub-150 nm) III-V buffer technology on a Si platform. This led to the realization of InAs n-FETs and GaSb p-FETs based on the stacked InAs or GaSb nanowires (NWs), respectively, employing multiple common modules such as gate stack and contact processes. Decent transfer characteristics with SS of 126 mV/decade and DIBL of 285 mV/V were obtained for the InAs n-FET with a channel length LCH of 20 nm. For the vertically stacked GaSb NW p-FET (LCH of 500 nm), the lowest reported SS of 188 mV/decade and highest ION/IOFF ratio of 3.5 orders were achieved for III-V p-FETs on Si substrate.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116552316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
A floating gate based 3D NAND technology with CMOS under array 基于浮动门的CMOS阵列三维NAND技术
2015 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2015-12-01 DOI: 10.1109/IEDM.2015.7409618
K. Parat, C. Dennison
{"title":"A floating gate based 3D NAND technology with CMOS under array","authors":"K. Parat, C. Dennison","doi":"10.1109/IEDM.2015.7409618","DOIUrl":"https://doi.org/10.1109/IEDM.2015.7409618","url":null,"abstract":"NAND Flash has followed Moore's law of scaling for several generations. With the minimum half-pitch going below 20nm, transition to a 3D NAND cell is required to continue the scaling. This paper describes a floating gate based 3D NAND technology with superior cell characteristics relative to 2D NAND, and CMOS under array for high Gb/mm2 density.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"34 4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132540153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 83
Color image sensor with organic photoconductive films 彩色图像传感器与有机光导薄膜
2015 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2015-12-01 DOI: 10.1109/IEDM.2015.7409800
T. Sakai, H. Seo, T. Takagi, M. Kubota, H. Ohtake, M. Furuta
{"title":"Color image sensor with organic photoconductive films","authors":"T. Sakai, H. Seo, T. Takagi, M. Kubota, H. Ohtake, M. Furuta","doi":"10.1109/IEDM.2015.7409800","DOIUrl":"https://doi.org/10.1109/IEDM.2015.7409800","url":null,"abstract":"A color image sensor with three stacked organic photoconductive films (OPFs) and transparent readout circuits for a high-resolution, high-sensitivity, compact color video camera is described. The sensor separates and simultaneously detects the three primary colors. We fabricated test image sensors and confirmed the feasibility of the color video camera with three stacked OPFs.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134560218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Novel SiGe/Si line tunneling TFET with high Ion at low Vdd and constant SS 新型高离子、低Vdd、恒SS的SiGe/Si线隧穿效应晶体管
2015 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2015-12-01 DOI: 10.1109/IEDM.2015.7409757
S. Blaeser, S. Glass, C. Schulte-Braucks, K. Narimani, N. V. D. Driesch, S. Wirths, A. Tiedemann, S. Trellenkamp, D. Buca, Q. Zhao, S. Mantl
{"title":"Novel SiGe/Si line tunneling TFET with high Ion at low Vdd and constant SS","authors":"S. Blaeser, S. Glass, C. Schulte-Braucks, K. Narimani, N. V. D. Driesch, S. Wirths, A. Tiedemann, S. Trellenkamp, D. Buca, Q. Zhao, S. Mantl","doi":"10.1109/IEDM.2015.7409757","DOIUrl":"https://doi.org/10.1109/IEDM.2015.7409757","url":null,"abstract":"This paper presents a novel SiGe/Si tunneling field-effect transistor (TFET) which exploits line tunneling parallel with the gate electric field. The device makes use of selective and self-adjusted silicidation and a counter doped pocket within the SiGe layer at the source tunnel junction, resulting in a high on-current Ion = 6.7 μA/μm at a supply voltage VDD = -0.5 V and a constant subthreshold swing (SS) of about 80 mV/dec over four orders of magnitude of drain-current Id.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123975109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 45
NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning 具有64k细胞(256 × 256)相变记忆突触阵列的NVM神经形态核心,具有片上神经元电路,用于连续原位学习
2015 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2015-12-01 DOI: 10.1109/IEDM.2015.7409716
Sangbum Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, Wanki Kim, R. Jordan, G. Burr, N. Sosa, A. Ray, Jin P. Han, Christopher P. Miller, K. Hosokawa, C. Lam
{"title":"NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning","authors":"Sangbum Kim, M. Ishii, S. Lewis, T. Perri, M. BrightSky, Wanki Kim, R. Jordan, G. Burr, N. Sosa, A. Ray, Jin P. Han, Christopher P. Miller, K. Hosokawa, C. Lam","doi":"10.1109/IEDM.2015.7409716","DOIUrl":"https://doi.org/10.1109/IEDM.2015.7409716","url":null,"abstract":"We demonstrate a neuromorphic core with 64k-cell phase change memory (PCM) synaptic array (256 axons by 256 dendrites) with in-situ learning capability. 256 configurable on-chip neuron circuits perform leaky integrate and fire (LIF) and synaptic weight update based on spike-timing dependent plasticity (STDP). 2T-1R PCM unit cell design separates LIF and STDP learning paths, minimizing neuron circuit size. The circuit implementation of STDP learning algorithm along with 2T-1R structure enables both LIF and STDP learning to operate asynchronously and simultaneously within the array, avoiding additional complication and power consumption associated with timing schemes. We show hardware demonstration of in-situ learning with large representational capacity, enabled by large array size and analog synaptic weights of PCM cells.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127659438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 152
Enabling low power BEOL compatible monolithic 3D+ nanoelectronics for IoTs using local and selective far-infrared ray laser anneal technology 使用本地和选择性远红外激光退火技术,为物联网实现低功耗BEOL兼容单片3D+纳米电子器件
2015 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2015-12-01 DOI: 10.1109/IEDM.2015.7409657
Chih-Chao Yang, J. Shieh, Tung-Ying Hsieh, Wen-Hsien Huang, Hsing-Hsiang Wang, C. Shen, Tsung-Ta Wu, Y. Hou, Yi-Ju Chen, Yao-Jen Lee, Min-Cheng Chen, Fu-Liang Yang, Yu-Hsiu Chen, Meng-Chyi Wu, W. Yeh
{"title":"Enabling low power BEOL compatible monolithic 3D+ nanoelectronics for IoTs using local and selective far-infrared ray laser anneal technology","authors":"Chih-Chao Yang, J. Shieh, Tung-Ying Hsieh, Wen-Hsien Huang, Hsing-Hsiang Wang, C. Shen, Tsung-Ta Wu, Y. Hou, Yi-Ju Chen, Yao-Jen Lee, Min-Cheng Chen, Fu-Liang Yang, Yu-Hsiu Chen, Meng-Chyi Wu, W. Yeh","doi":"10.1109/IEDM.2015.7409657","DOIUrl":"https://doi.org/10.1109/IEDM.2015.7409657","url":null,"abstract":"Local and selective far-infrared ray laser annealing (FIR-LA) process with very short heating duration (<;100μs) and low substrate temperature (<;400°C) enables sequentially stacked gate-first nanowire FETs (NWFETs), including 3D<sup>+</sup> Si NWFET and poly-Ge junctionless (JL) NWFET, and BEOL compatible monolithic 3D<sup>+</sup> nanoelectronics. The 3D<sup>+</sup> Si NWFETs, demonstrated by green nano-second laser crystallization (GNS-LC) and FIR-LA processes exhibit steep subthreshold swing (<;90mV/dec.) and high driving current (n-type: 310μA/μm and p-type: 220μA/μm). The 7nm poly-Ge JLNWFET shows high I<sub>on</sub>/I<sub>off</sub> ratio (>5×10<sup>4</sup>) and small DIBL. Furthermore, the thus fabricated low driving voltage 6T SRAM shows a static noise margin (SNM) of 130 mV at Vd=0.4V enabling the low power and low cost 3D<sup>+</sup>IC for internet of things (IoTs).","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121153579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Design and process technology co-optimization with SADP BEOL in sub-10nm SRAM bitcell 与SADP BEOL在亚10nm SRAM位单元的设计与工艺协同优化
2015 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2015-12-01 DOI: 10.1109/IEDM.2015.7409674
Y. Woo, M. Ichihashi, S. Parihar, Lei Yuan, S. Banna, J. Kye
{"title":"Design and process technology co-optimization with SADP BEOL in sub-10nm SRAM bitcell","authors":"Y. Woo, M. Ichihashi, S. Parihar, Lei Yuan, S. Banna, J. Kye","doi":"10.1109/IEDM.2015.7409674","DOIUrl":"https://doi.org/10.1109/IEDM.2015.7409674","url":null,"abstract":"Due to the resolution limit of the lithography tools, multiple patterning technologies are being introduced to the back-end of the line (BEOL). For example, LELELE (or LE3, triple litho-etch) or SADP (self-aligned double patterning) [1] are already implemented in 10nm node technology based on a polygon's geometry, its orientation and pitch requirement. However, metal architecture, arrangement of signal and power lines in a metal layer or across metal layers, cause a significant impact on operating performance as well as determine the metal's orientation, which is also an important element for lithographic performance. Therefore, all the factors should be addressed together to arrive at an optimal chip performance.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116805836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Advanced power electronic devices based on Gallium Nitride (GaN) 基于氮化镓(GaN)的先进电力电子器件
2015 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2015-12-01 DOI: 10.1109/IEDM.2015.7409713
D. Piedra, B. Lu, Min-Chul Sun, Yuhao Zhang, E. Matioli, F. Gao, Jinwook Chung, O. Saadat, L. Xia, M. Azize, T. Palacios
{"title":"Advanced power electronic devices based on Gallium Nitride (GaN)","authors":"D. Piedra, B. Lu, Min-Chul Sun, Yuhao Zhang, E. Matioli, F. Gao, Jinwook Chung, O. Saadat, L. Xia, M. Azize, T. Palacios","doi":"10.1109/IEDM.2015.7409713","DOIUrl":"https://doi.org/10.1109/IEDM.2015.7409713","url":null,"abstract":"It is the most exciting time for power electronics in decades. The combination of new applications, such as microinverters, electric vehicles and solid state lighting, with the new opportunities brought by wide bandgap semiconductors is expected to significantly increase the reach and impact of power electronics. This paper describes some of the recent advances on developing power devices based on Gallium Nitride (GaN), the key design constrains, and the process to take a new device material and structure from the research laboratory of universities to full commercialization.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116862076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Experimental study on carrier transport properties in extremely-thin body Ge-on-insulator (GOI) p-MOSFETs with GOI thickness down to 2 nm 极薄体绝缘子上锗(GOI) p- mosfet载流子输运特性的实验研究
2015 IEEE International Electron Devices Meeting (IEDM) Pub Date : 2015-12-01 DOI: 10.1109/IEDM.2015.7409611
Xiao Yu, Jian Kang, M. Takenaka, S. Takagi
{"title":"Experimental study on carrier transport properties in extremely-thin body Ge-on-insulator (GOI) p-MOSFETs with GOI thickness down to 2 nm","authors":"Xiao Yu, Jian Kang, M. Takenaka, S. Takagi","doi":"10.1109/IEDM.2015.7409611","DOIUrl":"https://doi.org/10.1109/IEDM.2015.7409611","url":null,"abstract":"In this paper, we have successfully demonstrated high quality Extremely-thin body (ETB) Ge-on-insulator (GOI) p-MOSFETs with thickness ranging from 25 nm to 2 nm. Furthermore, the hole mobility and the GOI thickness dependence over a wide range of GOI thickness down to 2 nm are systematically analyzed and understood from the viewpoint of the scattering mechanisms, for the first time.","PeriodicalId":336637,"journal":{"name":"2015 IEEE International Electron Devices Meeting (IEDM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117035818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信