Jing Yang, Siqi Sun, Ning Sun, Li Lu, Chengwu Zhang, Wanyu Shi, Yunhe Zhao, Shulei Jia
{"title":"HMMER-extractor: An auxiliary toolkit for identifying genomic macromolecular metabolites based on hidden Markov models.","authors":"Jing Yang, Siqi Sun, Ning Sun, Li Lu, Chengwu Zhang, Wanyu Shi, Yunhe Zhao, Shulei Jia","doi":"10.1016/j.ijbiomac.2024.137666","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137666","url":null,"abstract":"<p><p>Human microbiome contains various microbial macromolecules with important biological functions. The Hidden Markov Models (HMMs) can overcome the problem of low similarity sequences with distant relationships and are widely implemented within various sequence alignment softwares. However, the HMM-based sequence alignments can generate a large number of results, how to quickly screen and batch extract target homologs from microbiomes is the major sticking points. It is necessary to develop an integrated gene filter and extraction pipeline to quickly and accurately screen homologs. Here, we introduced the HMMER-Extractor for amino acids or nucleotide sequences extraction, which was a supporting toolkit through provided filtering scores and an iterative keyword matching (IKM) logic. To make it more user-friendly and accessible, we further presented a visualized web server platform. An interactive HTML output provided a user-friendly way to browse homologous annotations and sequence extraction. The web server provided the community with a streamlined and user-friendly interface to analyze microbiomes. Through the HMMER-Extractor, we constructed a cardiovascular disease related gene dataset of the macromolecular metabolite trimethylamine (TMA) and lipopolysaccharide (LPS) based on 46,699 bacterial genomes from human gut. Approximately 21,014 and 1961 bacterial strains were identified to contain the cnt or cut operon of TMA, and the waa gene cluster of LPS, respectively. The Escherichia coli occupied the largest proportion among all the bacterial species, which belonged to the phyla Firmicutes. The HMMER-Extractor toolkit is an integrated pipeline and has been proven to be accurate and fast in extracting target macromolecular encoding genes from microbial genomes.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137666"},"PeriodicalIF":7.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yang Wei, Yi Huang, Caican Wen, Kang Wei, Lanlan Peng, Xinlin Wei
{"title":"Theabrownin/whey protein isolate complex coacervate strengthens C<sub>2</sub>C<sub>12</sub> cell proliferation via modulation of energy metabolism and mitochondrial apoptosis.","authors":"Yang Wei, Yi Huang, Caican Wen, Kang Wei, Lanlan Peng, Xinlin Wei","doi":"10.1016/j.ijbiomac.2024.137686","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137686","url":null,"abstract":"<p><p>Theabrownin (TB)-whey protein isolate (WPI) complex coacervates (TW) were firstly prepared to investigate the regulatory effects on skeletal muscle. The binding of TB to WPI reached saturation with the strongest electrostatic interaction at the ratio of 10:1. The formation of TW was driven by electrostatic interactions with the aid of hydrogen bonding and hydrophobic interactions, and the digestion behavior of TW was investigated based on in vitro gastrointestinal and CaCO<sub>2</sub> cell models. The regulatory effect of TW on muscle cells was investigated by C<sub>2</sub>C<sub>12</sub> cell assay. Cell cycle analysis showed that TW promoted the transition of skeletal muscle cells from proliferative state to differentiated state. Immunofluorescence and gene expression revealed that TW positively regulated myogenic regulatory factors, contributing to myofiber formation. Moreover, TW activated the intracellular TCA cycling and oxidative phosphorylation, providing energy for skeletal muscle regeneration and repair. Mechanistically, TW inhibited the release of cytochrome C from mitochondria to cytoplasm through the Bcl-2/Cytochrome C/Cleaved-Caspase-3 pathway, exhibiting a protective effect on skeletal muscle cells. In the future, the molecular mechanism of TW enhancing skeletal muscle function should be validated through aging animal models and clinical trials and expand its therapeutic application for muscle health in functional food and dietary supplements.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137686"},"PeriodicalIF":7.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Milagros Sofia Bustamante-Bernedo, Lizbet León Félix, Eduart Gutiérrez-Pineda, Nils Leander Huamán-Castilla, Jose Luis Solis, Mónica Marcela Gómez León, I R Montoya-Matos, J C Yacono-Llanos, David G Pacheco-Salazar
{"title":"Development of antioxidant films based on anthocyanin microcapsules extracted from purple corn cob and incorporated into a chitosan matrix.","authors":"Milagros Sofia Bustamante-Bernedo, Lizbet León Félix, Eduart Gutiérrez-Pineda, Nils Leander Huamán-Castilla, Jose Luis Solis, Mónica Marcela Gómez León, I R Montoya-Matos, J C Yacono-Llanos, David G Pacheco-Salazar","doi":"10.1016/j.ijbiomac.2024.137658","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137658","url":null,"abstract":"<p><p>Biodegradable food packaging films were prepared from chitosan incorporated with microencapsulated anthocyanins powder (MAP) that was extracted from purple corn cob using the casting method. Anthocyanins extracts were microencapsulated with maltodextrin, gum arabic, and soy protein using a spray-drying method. The film based on chitosan and MAP (CHt@MAP) was prepared through citric acid cross-linking and plasticization with glycerol. The structural analysis of the CHt@MAP film revealed a semicrystalline structure by X-ray diffraction. The interactions were mainly via electrostatic and hydrogen bonding, as confirmed by Fourier-transform infrared. Based on scanning electron microscopy, the morphology of the films revealed evidence of the presence of MAP on the surface and cross-section. The microcapsules inside the films produced an increase in thickness (0.18-0.21 mm), lower water vapor permeability (12.4-8.5 × 10<sup>-10</sup> g m<sup>-1</sup>s<sup>-1</sup>Pa<sup>-1</sup>), and reduced elongation at break (217 % to 165 %), as well as tensile strength (1.3 to 0.45 MPa) compared to the chitosan film. Furthermore, the antioxidant activity of CHt@MAP film was high, with a radical scavenging activity of 56 %. It also exhibited a strong barrier to UV and visible light. The results indicate that the CHt@MAP film preserves the shelf life of blueberries at room temperature and could be used as an active packaging film for foods.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137658"},"PeriodicalIF":7.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dynamic analysis of bovine bone high-temperature hydrolysate emulsion formation based on microstructure and physicochemical interactions.","authors":"Yan Xiao, Lingxia Sun, Qian Ding, Miaoyun Li, Yaodi Zhu, Jong-Hoon Lee, Shengzhao Li, Gaiming Zhao, Yican Wang, Yuying Wang, Lijun Zhao","doi":"10.1016/j.ijbiomac.2024.137667","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137667","url":null,"abstract":"<p><p>In the food industry, the emulsifying process alters both the stability and quality of the emulsified products prepared by bovine bone high-temperature hydrolysate (BBHH). The microstructure and interactions of BBHH emulsion were characterized by cryo-scanning electron microscopy (Cryo-SEM) and Raman spectroscopy during emulsification. Notably, BBHH emulsion exhibited the best properties under emulsifying for 120 s, attributed to its interfacial adsorption characteristics. In terms of microstructure, the droplets were small and uniform, and the cross-linking and network structure between the droplet surfaces were obvious at 120 s. Raman spectroscopy indicated that the adsorption of BBHH at the oil-water interface mainly involved an increase of the β-sheet at the expense of the α-helix region. In addition, protein adsorption and structural development at the interface were driven by hydrophobic interactions, while further rearrangement and polymerization were mediated by disulfide bonds. Furthermore, the stability and particle size distribution of the emulsion also supported the results. This study provided a theoretical basis for the behavior of BBHH emulsion formation, which expanded valuable insights into the mechanisms by which liquid food emulsification systems mediated by animal-derived proteins and how they behave under a variety of external conditions.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137667"},"PeriodicalIF":7.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elucidation of Mg<sup>2+</sup> induced size and charge heterogeneity in monoclonal antibody therapeutics.","authors":"Himanshu Malani, Sunil Kumar, Anurag S Rathore","doi":"10.1016/j.ijbiomac.2024.137736","DOIUrl":"10.1016/j.ijbiomac.2024.137736","url":null,"abstract":"<p><p>Changes in charge variant profile are known to affect mAb stability and vice versa. This report elucidates the effects of magnesium metal (0.5 mM Mg<sup>2+</sup>) on trastuzumab (IgG1 antibody). Mg<sup>2+</sup> is often used as an excipient (50-100 mM) and lubricant (5-10 % w/w) in biopharmaceutical formulations. Analytical size-exclusion chromatography (SEC) and cation-exchange chromatography (CEX) coupled with mass spectrometry (MS) were used to evaluate the size and charge heterogeneity in the thermal and metal stressed samples and compared to the control sample (room temperature). The present study unveils that presence of Mg<sup>2+</sup> significantly increases the rate of aggregation with 9 % aggregation observed in Mg<sup>2+</sup> stressed samples as compared to that from thermal stress (~2 %) or control sample (<1 %). Similarly, a 2-fold elevation in acidic variants was observed both in presence of Mg<sup>2+</sup> and thermal stress, when contrasted with the control sample. Application of stress also led to the formation of 17 additional chemical modifications (7 due to thermal stress and 10 due to Mg<sup>2+</sup> stress) which were not identified in control, predominantly involving deamidation, isomerization of aspartic acid, oxidation, and succinimide modifications. The results indicate the need for a detailed analysis of the impact of presence of metals in biotherapeutic formulations.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137736"},"PeriodicalIF":7.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142646453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vedant Mundada, Gulsah Karabulut, Ragya Kapoor, Amir Malvandi, Hao Feng
{"title":"Fabricating dehydrated albumen with a novel variable frequency ultrasonic drying method: Drying kinetics, physiochemical and foaming characteristics.","authors":"Vedant Mundada, Gulsah Karabulut, Ragya Kapoor, Amir Malvandi, Hao Feng","doi":"10.1016/j.ijbiomac.2024.137664","DOIUrl":"https://doi.org/10.1016/j.ijbiomac.2024.137664","url":null,"abstract":"<p><p>Albumen, primarily composed of ovalbumin, is a vital, nutrient-rich ingredient in the food industry. Drying is a critical step in low-water-activity albumen powder production, allowing extended shelf-life and reduced costs in handling, transportation, and storage of albumen products. Traditional drying methods, such as spray drying (SD) and hot air drying (HAD), often degrade albumen. This study explores variable frequency contact ultrasonic drying (CUD) as a novel and green alternative, operating at a central frequency of 20 kHz with sound amplitudes of 0 %, 40 %, and 60 %, and temperatures of 40 °C and 60 °C. The drying kinetics, physical, and foaming properties of CUD-dried albumen proteins were compared with those of hot-air-, spray-, and freeze-dried (FD) samples. Compared to HAD, CUD significantly enhanced the drying process, as evidenced by a 240 % increase in effective moisture diffusivity, a 66-78 % reduction in activation energy (Ea), and a 27 % reduction in drying time. Moreover, CUD maintained higher protein integrity, evident from a 24-35 % decrease in enthalpies, more β-turn and random coil structures, and increased free sulfhydryl groups. Notably, CUD at 40 °C significantly improved foaming capacity by 88 %, and at 60 °C, it enhanced foaming stability by 34 %, outperforming other drying methods. Protein solubility of CUD-albumen was improved by 10-12 % compared to HAD and was slightly better than FD. CUD-albumen showed a brighter color with a 26 % lower browning index than the HAD samples. Overall, CUD emerges as an effective and sustainable method for drying high-protein materials, ensuring high-quality albumen powders.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137664"},"PeriodicalIF":7.7,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142674689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Qiming Yan, Yang Cao, Qihui Chen, Maochun Hong, Meng Zhou
{"title":"Inspired by plant body frameworks bionics: Fabrication of self-healing polyvinyl alcohol/cellulose nanocrystals composite hydrogels reinforced by polyurethane sponges for flexible supercapacitors.","authors":"Qiming Yan, Yang Cao, Qihui Chen, Maochun Hong, Meng Zhou","doi":"10.1016/j.ijbiomac.2024.137795","DOIUrl":"10.1016/j.ijbiomac.2024.137795","url":null,"abstract":"<p><p>With the booming development of electronic technology, ultra-toughness and self-healing supercapacitors have drawn substantial attentions. In this work, inspired by plant body frameworks, a novel method was proposed to prepare self-healing conductive hydrogels based on self-healing polyurethane sponge (PUS) network. First, a self-healing PUS based on multiple hydrogen bonding interactions and disulfide bonds was prepared. Subsequently, PUS was combined with polyvinyl alcohol (PVA)/cellulose nanocrystals (CNF) composite hydrogels crosslinked by borate ester bonds and hydrogen bonding interactions to manufacture the sponge network reinforced self-healing conductive hydrogels. Due to the reinforcement of PUS, the composite hydrogels had excellent mechanical properties, with a tensile strength of 1.81 MPa and a compressive strength of 1.96 MPa. After 400 times of charge-discharge cycles under bending deformation, the supercapacitor could maintain 90.1 % of the original specific capacitance value. Furthermore, the hydrogels could be healed at room temperature due to the hydrogen bonds and reversible borate bonds in PVA/CNF matrix, as well as the disulfide bonds and multiple hydrogen bonds in PUS. The healed supercapacitor could maintain 75.2 % of the original specific capacitance value after 400 times of charge-discharge cycles. Therefore, the as-prepared self-healing and tough conductive hydrogels may have promising prospects in electronic devices.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137795"},"PeriodicalIF":7.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Armstrong Ighodalo Omoregie, Mansur Alhassan, Tariq Ouahbi
{"title":"Comments on \"Extraction, purification, characteristics, bioactivities, prospects, and toxicity of Lilium spp. polysaccharides by Li et al. (2024) in Int. J. Biol. Macromol.\"","authors":"Armstrong Ighodalo Omoregie, Mansur Alhassan, Tariq Ouahbi","doi":"10.1016/j.ijbiomac.2024.137770","DOIUrl":"10.1016/j.ijbiomac.2024.137770","url":null,"abstract":"<p><p>Lilium spp. polysaccharides (LSPs) are gaining significant attention for their diverse health benefits, including antioxidant, antitumor, and antibacterial properties. This paper critically analyzes a recent comprehensive review by Li et al., published in International Journal of Biological Macromolecules, focusing on LSP extraction, purification, and health benefits. While the original review offers valuable insights, this critique identifies opportunities to strengthen the bibliometric analysis section. This study employs a comprehensive search strategy in Scopus using specific keywords and covering a broader time frame (1975-2023), revealing 94 research articles on LSPs. The critique proposes improvements to enhance transparency and impact, such as specifying search queries and Boolean operators used across databases, detailing selection criteria, and incorporating advanced analyses. This article discusses author keyword analysis, co-citation analysis of cited authors, and bibliographic coupling analysis of documents using VOSviewer software. The global landscape mapping of LSP relationships involving authors, countries, and keywords was determined using RStudio software. These refinements will provide a more robust foundation for understanding the LSP research landscape and future research directions, while also addressing common pitfalls and suggesting improvements in bibliometric analysis for future studies.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137770"},"PeriodicalIF":7.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H M Ragab, N S Diab, Rosilah Ab Aziz, Eshraga Abdallah Ali Elneim, Azzah M Alghamdi, Sara A Al-Balawi, M O Farea
{"title":"Development and characterization of HPMC/NaAlg-CuO bio-nanocomposites: Enhanced optical, electrical, and antibacterial properties for sustainable packaging applications.","authors":"H M Ragab, N S Diab, Rosilah Ab Aziz, Eshraga Abdallah Ali Elneim, Azzah M Alghamdi, Sara A Al-Balawi, M O Farea","doi":"10.1016/j.ijbiomac.2024.137774","DOIUrl":"10.1016/j.ijbiomac.2024.137774","url":null,"abstract":"<p><p>Copper oxide nanoparticles (CuO NP) were incorporated into a hydroxypropyl cellulose (HPMC) and sodium alginate (NaAlg) matrix through a casting method to create bio-nanocomposite films. XRD analysis confirmed the semi-crystalline nature of the HPMC/NaAlg matrix, with a broad peak at 2θ = 21.22°, which decreased in intensity as CuO concentration increased, indicating a shift towards an amorphous structure. FT-IR analysis demonstrated changes in band intensity, which can be attributed to the reduced volume fraction of the polymer blend in the presence of the CuO nanofiller. SEM images showed homogeneity at low CuO NP concentrations, but at 0.9 wt% CuO, nanoparticle aggregation became evident. The UV-visible spectra indicated a redshift from 212 nm to 246 nm and a decrease in optical energy gap from 4.78 eV for the pure blend to 2.99 eV at 0.9 wt% CuO, associated with increased localized defect states. AC electrical conductivity and dielectric properties improved with CuO dispersion, enhancing the bio-nanocomposite's suitability for electrochemical and optoelectronic applications. The bio-nanocomposites demonstrated significant antibacterial activity, with films containing 0.4 and 0.7 wt% CuO achieving the largest inhibition zones against B. subtilis, S. aureus, P. aeruginosa, and E. coli. Overall, these findings suggest that HPMC/NaAlg-CuO bio-nanocomposites are promising candidates for use in antibacterial packaging and optoelectronics.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137774"},"PeriodicalIF":7.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
So Young Ban, Da-Young Yun, Su-Jin Yeom, Hee-Gon Jeong, Jong-Tae Park
{"title":"Development of Saccharomyces cerevisiae accumulating excessive amount of glycogen and its effects on gut microbiota in a mouse model.","authors":"So Young Ban, Da-Young Yun, Su-Jin Yeom, Hee-Gon Jeong, Jong-Tae Park","doi":"10.1016/j.ijbiomac.2024.137589","DOIUrl":"10.1016/j.ijbiomac.2024.137589","url":null,"abstract":"<p><p>Saccharomyces cerevisiae accumulates glycogen, a hyperbranched glucose polymer with multiple bio-functionalities. In this study, mutants of S. cerevisiae that accumulate excessive amounts of glycogen were developed through UV mutagenesis. From over 30,000 mutants, the mutant strain CEY1, which exhibited the highest glycogen production, was selected using iodine vapor screening. The glycogen structures of wild type (WT) and CEY1 were analyzed and found to be relatively similar in molecular weight, hydrodynamic diameter, and side-chain distribution. The glycogen from CEY1 contained long branches (DP >12) 23.6 % greater than those in Escherichia coli TBP38. In addition, WT and CEY1 glycogen showed 32 %-34 % digestibility, which is significantly lower than E. coli glycogen. The glycogen content in dried CEY1 cells was increased to 21.7 % during laboratory-scale fed-batch fermentation. Glycogen with a homogeneous structure was accumulated to 17.5 % (w/w dried cell), and the total glucan content was increased by 33.2 % during large-scale fed-batch fermentation. In a mouse model, a diet containing 30 % CEY1 increased the production of butyrate and populations of beneficial bacteria, including Bacteroides and Parabacteroides. Therefore, glycogen from CEY1 exhibits a distinct structure from other polysaccharides, with notably slow and low digestibility, thereby indicating its potential application as a dietary supplement.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137589"},"PeriodicalIF":7.7,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142666611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}