FlatChemPub Date : 2024-10-22DOI: 10.1016/j.flatc.2024.100767
Sohan Bir Singh, Priyanka Hajare, Ruhit Jyoti Konwar, Mahuya De
{"title":"Physically and chemically modified zeolite templated nitrogenous carbons for enhanced hydrogen adsorption","authors":"Sohan Bir Singh, Priyanka Hajare, Ruhit Jyoti Konwar, Mahuya De","doi":"10.1016/j.flatc.2024.100767","DOIUrl":"10.1016/j.flatc.2024.100767","url":null,"abstract":"<div><div>Carbon materials have great potential for hydrogen adsorption due to their remarkable specific surface area, unique pore size characteristics and ability to functionalize with metal or non-metal. In this work, zeolite templated carbons were physically and chemically modified by varying preparation conditions to study their impact on structure and hydrogen adsorption capacity. The resultant templated carbons showed surface area in the range of 608–1665 m<sup>2</sup>/g and pore volume between 0.63 to 1.00 cc/g, with 28–48 % microporosity depending on synthesis conditions. The surface area and pore volume increased with increasing carbon deposition temperature from 650 to 750 °C and both decreased at higher carbon deposition temperature of 850 °C. At heat treatment temperature of 900 °C, the surface area and pore volume of templated carbons were observed to be higher. Incorporation of nitrogen heteroatom in carbon matrix during carbon deposition might have facilitated porosity. Use of argon as carrier gas resulted in the highest surface area (1665 m<sup>2</sup>/g), micropore area (597 m<sup>2</sup>/g) and pore volume (1.0 cc/g). The same templated carbon showed maximum hydrogen adsorption capacity of 0.20 and 2.81 wt% at 25 and –196 °C, respectively at 15 bar. On addition of platinum to templated carbon, the hydrogen adsorption capacity was significantly improved from 0.20 to 0.28 wt% at 25 °C and from 2.81 to 3.24 wt% at –196 °C. The strong affinity of Pt for hydrogen might have enhanced hydrogen adsorption.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100767"},"PeriodicalIF":5.9,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FlatChemPub Date : 2024-10-17DOI: 10.1016/j.flatc.2024.100760
Iuegyun Hong , Hyeonhu Bae , Jeonghwan Ahn , Hyeondeok Shin , Hoonkyung Lee , Yongkyung Kwon
{"title":"Design of biphenylene-derived tunable dirac materials","authors":"Iuegyun Hong , Hyeonhu Bae , Jeonghwan Ahn , Hyeondeok Shin , Hoonkyung Lee , Yongkyung Kwon","doi":"10.1016/j.flatc.2024.100760","DOIUrl":"10.1016/j.flatc.2024.100760","url":null,"abstract":"<div><div>The exploration of carbon allotropes has unveiled a series of two-dimensional (2D) materials with unique electronic and mechanical properties, yet the need for stable structures with tailored electronic properties persists. In this study, we introduce a new class of 2D carbon allotropes derived from the biphenylene network (BPN), incorporating acetylenic linkages to tune their structural and electronic characteristics. Through density functional theory calculations, we identified ten novel BPN-derived structures that exhibit both energetic and dynamic stability, confirmed by cohesive energy and phonon spectrum analyses. Among them, BPN-02 and BPN-04 are metallic, featuring critically-tilted type-III Dirac cones under <span><math><mrow><mo>∼</mo><mn>5</mn></mrow></math></span> % biaxial strain, while BPN-22 is a semiconductor with a band gap of 0.95 eV and exhibits highly anisotropic carrier mobility. Additionally, these structures demonstrate significant anisotropy in their elastic properties, further distinguishing them from other 2D carbon materials like graphene. Our findings suggest that these novel BPN-based structures have strong potential for next-generation electronic and optoelectronic applications, providing new avenues for the design and synthesis of advanced carbon materials.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100760"},"PeriodicalIF":5.9,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FlatChemPub Date : 2024-10-12DOI: 10.1016/j.flatc.2024.100765
Yaohui Wang , Zhu Ding , Muhammad Ahsan Iqbal , Nayab Arif , Luyan Li , Peng Li , Yu-Jia Zeng
{"title":"Flash Joule heating technology in two-dimensional materials and beyond","authors":"Yaohui Wang , Zhu Ding , Muhammad Ahsan Iqbal , Nayab Arif , Luyan Li , Peng Li , Yu-Jia Zeng","doi":"10.1016/j.flatc.2024.100765","DOIUrl":"10.1016/j.flatc.2024.100765","url":null,"abstract":"<div><div>In recent decades, ongoing exploration on material synthesis, coupled with advancements in science and technology, has led to the invention and application of numerous specialized devices. To fulfill the demand for high-performance materials in modern society, flash Joule heating (FJH) has been invented and applied in this context to achieve high efficiency, low cost, and environmental sustainability in material synthesis. This technology offers fast heating and cooling rates, high energy utilization, and promising results in material synthesis. FJH finds its applications in synthesizing two-dimensional materials, recycling battery metals, graphite, cathode, and recovery of precious metals from mines. This review presents an overview of FJH technology and its applications and prospects.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100765"},"PeriodicalIF":5.9,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142442169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FlatChemPub Date : 2024-10-11DOI: 10.1016/j.flatc.2024.100764
Muhammad Mushtaq , Iltaf Muhammad , Zheng Chang , Zhang Leilei , Muhammad Abdul Rauf Khan , Neda Rahmani , Alireza Shabani , Hyeonhu Bae , Hoonkyung Lee , Tanveer Hussain
{"title":"Uncovering efficient sensing properties of vanadium disulfide (VS2) nanosheets towards specific neurotransmitters: A DFT prospective","authors":"Muhammad Mushtaq , Iltaf Muhammad , Zheng Chang , Zhang Leilei , Muhammad Abdul Rauf Khan , Neda Rahmani , Alireza Shabani , Hyeonhu Bae , Hoonkyung Lee , Tanveer Hussain","doi":"10.1016/j.flatc.2024.100764","DOIUrl":"10.1016/j.flatc.2024.100764","url":null,"abstract":"<div><div>Designing efficient nanosensors based on ultrathin materials for the detection of neurotransmitters is crucial for biosensing applications. In this work, using spin-polarized density functional theory (DFT) calculations, structural, electronic, magnetic, and adsorption of the selected neurotransmitters, such as dopamine (DA) and histamine (HA), were investigated using light transition metals dichalcogenides, vanadium disulfide (VS<sub>2</sub>) nanosheets. It was revealed that DA and HA adsorbed relatively weakly on pristine (p-VS<sub>2</sub>) as well as single sulfur (S) Vacancy-induced (SV-VS<sub>2</sub>). However, the introduction of selected transition metals (TMs) dopants, such as cobalt (Co), iron (Fe), and nickel (Ni), significantly improved the adsorption of DA and HA. Among the studied systems, Ni-doped VS<sub>2</sub> (Fe-doped VS<sub>2</sub>) exhibited the strongest adsorption toward DA (HA) with an adsorption energy of −2.00 (−1.28) eV, which is promising for practical sensing applications. Charge analysis revealed that both DA and HA acted as charge donors to the TMs-doped VS<sub>2</sub>. Upon DA/HA adsorptions, quantifiable variations were observed in the electronic structures and magnetic properties of TMs-doped VS<sub>2</sub>, which were studied through band structures, spin-polarized density of states, and work function calculations. Lastly, for the practical detection capabilities at diverse pressure and temperature settings, we employed the Langmuir adsorption model. It was found that TMs-doped VS<sub>2</sub> detected DA and HA at concentrations ranging from tens of ppt to ppm levels, respectively. We strongly believe that our findings will contribute towards the development of highly effective nanosensors based on TMs-doped VS<sub>2</sub> nanosheets for the detection of DA, and HA.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100764"},"PeriodicalIF":5.9,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142434433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FlatChemPub Date : 2024-10-10DOI: 10.1016/j.flatc.2024.100758
Sachin Sharma Ashok Kumar , M. Nujud Badawi , Khishn K. Kandiah , K. Ramesh , S. Ramesh , S. Ramesh , S.K. Tiong
{"title":"The emergence of graphene and its nanomaterials based natural rubber nanocomposites: A short review on the latest trends on its preparations, properties and applications","authors":"Sachin Sharma Ashok Kumar , M. Nujud Badawi , Khishn K. Kandiah , K. Ramesh , S. Ramesh , S. Ramesh , S.K. Tiong","doi":"10.1016/j.flatc.2024.100758","DOIUrl":"10.1016/j.flatc.2024.100758","url":null,"abstract":"<div><div>The two-dimensional (2D) graphene material has been a rising star in the area of polymer nanocomposites and materials science due to its excellent mechanical, electrical and thermal properties, gas barrier performance and high surface area. Hence, this makes graphene and its nanomaterials an ideal multifunctional filler for rubbers, which improved the overall properties of the natural rubber (NR) matrix. However, in order to tailor the interfacial interaction, appropriate graphene dispersion, the vulcanization kinetics etc., it is vital to carefully consider the utilization of the graphene properties in the rubber nanocomposites to yield high quality nanocomposites. This review offers the coverage on the recent methods and trends to uniformly disperse nanofillers in rubber matrix, to construct a strong interfacial interaction between the NR and graphene and the effects of graphene oxide (GO) and reduced GO (rGO) on the vulcanization behaviour of NR nanocomposites. The properties of these nanocomposites will be discussed to provide an intuition into the major necessities of graphene fillers with respect to several industrial applications. Finally, the challenges that need to be addressed in order to attain advanced device performance will be discussed along with the future perspectives. It is envisaged that the outstanding functional properties of the 2D fillers and their combinations could be exploited to fabricate graphene/NR nanocomposites, thus making it a potential candidate as a new class of advanced materials in the near future.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100758"},"PeriodicalIF":5.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142445617","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synergistic advancements: Exploring MXene/graphene oxide and MXene/reduced graphene oxide composites for next-generation applications","authors":"Siavash Iravani , Atefeh Zarepour , Ehsan Nazarzadeh Zare , Pooyan Makvandi , Arezoo Khosravi , Ali Zarrabi","doi":"10.1016/j.flatc.2024.100759","DOIUrl":"10.1016/j.flatc.2024.100759","url":null,"abstract":"<div><div>The exploration of MXene-graphene oxide (GO) and MXene-reduced GO (rGO) composites represents a significant leap forward in the development of advanced materials for next-generation applications. This review delves into the synergistic properties of MXene and GO, highlighting their combined potential to develop various technological fields. MXenes, with their unique two-dimensional structure and exceptional electrical conductivity, coupled with the remarkable mechanical strength and flexibility of GO, create composites with enhanced performance characteristics. These materials exhibit superior electrochemical properties, making them ideal candidates for energy storage devices such as supercapacitors and batteries. Additionally, their excellent thermal and mechanical properties open new avenues in the fields of electronics, sensors, and catalysis. This review seeks to explore the specific areas where MXene-(r)GO composites demonstrate exceptional promise, such as energy storage, sensing technologies, electromagnetic interference shielding, visible/infrared camouflages, and advanced materials development. These composites offer a promising pathway to address the growing demands for high-performance, multifunctional materials in various industrial sectors. This review aims to provide insights into the fundamental mechanisms driving the enhanced properties of MXene-(r)GO composites and to inspire further research and development in this exciting area of material science.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100759"},"PeriodicalIF":5.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FlatChemPub Date : 2024-10-10DOI: 10.1016/j.flatc.2024.100762
H.M. Solayman , Noor Yahida Yahya , Kah Hon Leong , Md. Kamal Hossain , Kang Kang , Lan Ching Sim , Kyung-Duk Zoh , Md. Badiuzzaman Khan , Azrina Abd Aziz
{"title":"Photocatalytic performance of acid exfoliated graphitic carbon nitride (g-C3N4) for the degradation of dye under direct sunlight","authors":"H.M. Solayman , Noor Yahida Yahya , Kah Hon Leong , Md. Kamal Hossain , Kang Kang , Lan Ching Sim , Kyung-Duk Zoh , Md. Badiuzzaman Khan , Azrina Abd Aziz","doi":"10.1016/j.flatc.2024.100762","DOIUrl":"10.1016/j.flatc.2024.100762","url":null,"abstract":"<div><div>Graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) is one of the most promising semiconductor materials applied in photocatalytic applications. However, the photocatalytic performance of bulk g-C<sub>3</sub>N<sub>4</sub> was not satisfactory due to poor visible-light absorption, quick recombination, and low amount of active interfacial reaction sites. In this study, we have modified the bulk g-C<sub>3</sub>N<sub>4</sub> by acid (nitric, hydrochloric and sulphuric) exfoliation to enhance the photocatalytic degradation of methylene blue (MB) and methyl orange (MO) dye. Sulfuric acid-treated g-C<sub>3</sub>N<sub>4</sub> photocatalyst (CN-S) presented significant photocatalytic degradation toward both MO and MB compared to the pristine g-C<sub>3</sub>N<sub>4</sub>. The photocatalytic degradation performance for CN-S is found to be ∼ 96.89 % for MO and ∼ 93.12 % for MB under 150 min under direct sunlight irradiation. Free radical scavenging tests showed the superoxide radicals (•O<sub>2</sub><sup>−</sup>) were mostly responsible to the photodegradation of dyes while comparing to hydroxyl radicals (•OH) and photo-induced holes (h<sup>+</sup>). Which is attributed by Photoluminescence (PL) and time resolved PL emission spectra indicated a low electron-hole pair’s (e<sup>−</sup>/h<sup>+</sup>) recombination and longer charge-carrier lifetime. Moreover, the CN-S showed excellent recyclability for up to 5 runs with a slight reduction of degradation performance from 96.89 to 90.55 % for MO and 93.12 % to 88.84 % for MB dye, respectively. Ultimately, the results demonstrated that CN-S was a superb photocatalyst for the elimination and deterioration of MB and MO dyes from wastewater.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100762"},"PeriodicalIF":5.9,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FlatChemPub Date : 2024-10-09DOI: 10.1016/j.flatc.2024.100755
Ben Walters, Michael S.A. Kamel, Mohan V. Jacob, Mostafa Rahimi Azghadi
{"title":"Sustainable vertically-oriented graphene-electrode memristors for neuromorphic applications","authors":"Ben Walters, Michael S.A. Kamel, Mohan V. Jacob, Mostafa Rahimi Azghadi","doi":"10.1016/j.flatc.2024.100755","DOIUrl":"10.1016/j.flatc.2024.100755","url":null,"abstract":"<div><div>Neuromorphic computing, an innovative field in electronic and computing engineering, aims to enhance computing paradigms by simulating brain processes. Memristors, a two-terminal device, hold promise in revolutionising neuromorphic architectures by circumventing the Von-Neumann bottleneck. The performance and applicability of memristors heavily rely on the materials and fabrication processes employed. Graphene exhibits unique properties that can be leveraged in memristor design. Moreover, graphene stands out as a material with the potential for large-scale, sustainable production through Plasma Enhanced Chemical Vapour Deposition (PECVD). Notably, the properties of graphene-electrode memristors vary with minor structural differences induced by different PECVD temperatures. This paper reports the synthesis of graphene electrodes by time- and cost-effective PECVD from a sustainable plant extract for memristors. In addition, this paper delves into investigating how these structural variations impact the properties of graphene memristors and explores their potential exploitation in neuromorphic applications for implementing the well-known Spike Timing Dependent Plasticity (STDP) learning mechanism. The paper also utilises the developed STDP learning to perform an unsupervised spike-based pattern classification task.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100755"},"PeriodicalIF":5.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of 2D Ir-DMG nanosheets as a colorimetric sensor probe for Ni (II) sensing and a highly sensitive, reliable, and portable colorimetric sensor device for environmental analysis","authors":"Hemal Weerasinghe , Maheshika Kumarihamy , Hui-Fen Wu","doi":"10.1016/j.flatc.2024.100763","DOIUrl":"10.1016/j.flatc.2024.100763","url":null,"abstract":"<div><div>The era of nanomaterials made a revolutionary change in colorimetric sensing with ultra-high sensitivity, improved reactivity, and enhanced photoactivity. The first-ever novel 2D metal–organic nanosheets were synthesized using IrCl<sub>3</sub> and Dimethylglyoxime (DMG) by probe ultrasonication (PUS) followed by a solvothermal wet-chemical approach. This material has shown a rapid color change from yellow to crimson red with Ni (II) after the formation of complex. The UV–visible absorption spectra are the conventional methodology for colorimetric sensors and here, it was given a perfect linear relationship with an R<sup>2</sup> of 0.99 and an LOD of 1.60 µM (0.1 ppm). The average calculated molar extinction coefficient for this system was 1889.30 M<sup>−1</sup> cm<sup>−1</sup>. This is comparatively high absorptivity value. In addition, a novel Arduino-based colorimetric sensor device and corresponding software were developed under the name of “Chrom Metrics”. This Arduino device is unique since it can sense all wavelengths and the combined RGB delta E values. Therefore, it can provide more information/rationale for colorimetry than other devices/methods. The same Ir-DMG & Ni (II) system showed a perfect linear relationship with an R<sup>2</sup> of 0.98 and a LOD of 0.85 µM (0.05 ppm) by the data obtained from this sensor device. Thus, this new device is easier and more accurate, highly efficient, rapid, highly selective, and sensitive.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100763"},"PeriodicalIF":5.9,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142527773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
FlatChemPub Date : 2024-10-05DOI: 10.1016/j.flatc.2024.100756
Yuming Dai , Zhendong Hao , Yuhan Zeng , Guochang Li , Zhen Shen , Xingyu Zhu , Yuqian Xu , Xue Wang , Fangyu Zhu , Lijun Yang , Xizhang Wang , Qiang Wu , Zheng Hu
{"title":"Boosting supercapacitive performance of SnS2 via trace Pb doping","authors":"Yuming Dai , Zhendong Hao , Yuhan Zeng , Guochang Li , Zhen Shen , Xingyu Zhu , Yuqian Xu , Xue Wang , Fangyu Zhu , Lijun Yang , Xizhang Wang , Qiang Wu , Zheng Hu","doi":"10.1016/j.flatc.2024.100756","DOIUrl":"10.1016/j.flatc.2024.100756","url":null,"abstract":"<div><div>High-performance electrode materials are crucial for enhancing the performance of supercapacitors. Among various candidates, pseudo-capacitive SnS<sub>2</sub> is a promising one due to its high specific capacitance, earth-abundance, nontoxicity as well as low-cost. However, its actual electrochemical performance is restricted owing to the poor intrinsic conductivity and current fabrication processes on improving the conductivity are usually complicated. In this study, based on first-principles calculations, Pb doping is introduced to enhance the conductivity of SnS<sub>2</sub>. Pb-doped SnS<sub>2</sub> nanosheets are synthesized via a simple one-step hydrothermal method. With trace Pb doping (Pb<sub>o</sub>.<sub>o1</sub>SnS<sub>2</sub>), an impressive 4-order-of-magnitude increase in conductivity was achieved compared to pristine SnS<sub>2</sub>. Furthermore, Pb-doped SnS<sub>2</sub> nanosheets exhibit a superior mass-specific capacitance of 533.7 F g<sup>−1</sup> at 50 mV s<sup>−1</sup> and excellent long-term capacitance retention of 90.2 % over 100,000 cycles at 5 A g<sup>−1</sup>. This study presents a simple and effective approach to enhancing the supercapacitor performance of SnS<sub>2</sub> and advances the practical applications of electrochemical energy storage devices based on 2D materials.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"48 ","pages":"Article 100756"},"PeriodicalIF":5.9,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142418178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}