From charge transfer to sustainability: A multifaceted DFT approach to ionic liquid design

IF 5.9 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Danish Ali , Muhammad Arif Ali , Afifa Yousuf , Hong-Liang Xu
{"title":"From charge transfer to sustainability: A multifaceted DFT approach to ionic liquid design","authors":"Danish Ali ,&nbsp;Muhammad Arif Ali ,&nbsp;Afifa Yousuf ,&nbsp;Hong-Liang Xu","doi":"10.1016/j.flatc.2025.100899","DOIUrl":null,"url":null,"abstract":"<div><div>This study employs density functional theory (DFT) at the M06-2×/6–31 + g(d,p) level to investigate the structural, electronic, and thermodynamic properties of ammonium ([AM]<sup>+</sup>), phosphonium ([PH]<sup>+</sup>), and sulfonium ([SU]<sup>+</sup>) ionic liquids (ILs) paired with halide ([Br]<sup>−</sup>, [Cl]<sup>−</sup>, [F]<sup>−</sup>) and sulfonate ([CF₃SO₃]<sup>−</sup>, [CH₃SO₃]<sup>−</sup>) anions. Frontier molecular orbital (FMO) analysis reveals [PH]<sup>+</sup>[Br]<sup>−</sup> as the most reactive IL pair with the smallest energy gap (5.57 eV), while [SU]<sup>+</sup>[CF₃SO₃]<sup>−</sup> exhibits the highest stability (8.58 eV). Potential energy surface (PES) scans demonstrate substantial rotational energy barriers, confirming strong cation-anion interactions. Natural bond orbital (NBO) analysis shows [PH]<sup>+</sup>[Br]<sup>−</sup> has the highest binding energy (−530.55 kcal/mol), supported by energy decomposition analysis (EDA) indicating dominant orbital stabilization. Net population analysis (NPA) reveals significant charge transfer, with [PH]<sup>+</sup>[Br]<sup>−</sup> displaying optimal electrostatic complementarity. Thermodynamic calculations confirm the spontaneous formation of all IL pairs. Independent gradient model based on Hirshfeld (IGMH) and quantum theory of atoms in molecules (AIM) analyses validate non-covalent interactions and thermal stability. The [PH]<sup>+</sup>[Br]<sup>−</sup> pair exhibits exceptional orbital stabilization (<em>E</em><sup>(2)</sup> = 10.73 kcal/mol) and low rotational barriers, making it a promising candidate for catalytic applications. This comprehensive computational study provides fundamental insights into IL design, highlighting the interplay between electronic structure, charge distribution, and intermolecular interactions. The results establish a framework for developing stable, reactive ILs for green chemistry and energy applications, with [PH]<sup>+</sup>[Br]<sup>−</sup> emerging as a particularly efficient system.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"52 ","pages":"Article 100899"},"PeriodicalIF":5.9000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725000935","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study employs density functional theory (DFT) at the M06-2×/6–31 + g(d,p) level to investigate the structural, electronic, and thermodynamic properties of ammonium ([AM]+), phosphonium ([PH]+), and sulfonium ([SU]+) ionic liquids (ILs) paired with halide ([Br], [Cl], [F]) and sulfonate ([CF₃SO₃], [CH₃SO₃]) anions. Frontier molecular orbital (FMO) analysis reveals [PH]+[Br] as the most reactive IL pair with the smallest energy gap (5.57 eV), while [SU]+[CF₃SO₃] exhibits the highest stability (8.58 eV). Potential energy surface (PES) scans demonstrate substantial rotational energy barriers, confirming strong cation-anion interactions. Natural bond orbital (NBO) analysis shows [PH]+[Br] has the highest binding energy (−530.55 kcal/mol), supported by energy decomposition analysis (EDA) indicating dominant orbital stabilization. Net population analysis (NPA) reveals significant charge transfer, with [PH]+[Br] displaying optimal electrostatic complementarity. Thermodynamic calculations confirm the spontaneous formation of all IL pairs. Independent gradient model based on Hirshfeld (IGMH) and quantum theory of atoms in molecules (AIM) analyses validate non-covalent interactions and thermal stability. The [PH]+[Br] pair exhibits exceptional orbital stabilization (E(2) = 10.73 kcal/mol) and low rotational barriers, making it a promising candidate for catalytic applications. This comprehensive computational study provides fundamental insights into IL design, highlighting the interplay between electronic structure, charge distribution, and intermolecular interactions. The results establish a framework for developing stable, reactive ILs for green chemistry and energy applications, with [PH]+[Br] emerging as a particularly efficient system.
从电荷转移到可持续性:离子液体设计的多方面DFT方法
本研究采用m06 - 2x / 6-31 + g(d,p)水平的密度泛函理论(DFT)来研究铵离子液体([AM]+)、磷离子液体([PH]+)和磺离子液体([SU]+)与卤化物离子([Br]−、[Cl]−、[F]−)和磺酸盐离子([CF₃SO₃]−、[CH₃SO₃]−)的结构、电子和热力学性质。前沿分子轨道(FMO)分析表明,[PH]+[Br]−反应性最强,能隙最小(5.57 eV),而[SU]+[CF₃SO₃]−稳定性最高(8.58 eV)。势能表面(PES)扫描显示了大量的旋转能垒,证实了强的阳离子-阴离子相互作用。自然键轨道(NBO)分析表明,[PH]+[Br]−具有最高的结合能(- 530.55 kcal/mol),能量分解分析(EDA)支持这一结论。净居群分析(NPA)显示了显著的电荷转移,[PH]+[Br]−表现出最佳的静电互补性。热力学计算证实了所有IL对的自发形成。基于Hirshfeld (IGMH)和分子中原子量子理论(AIM)的独立梯度模型分析验证了非共价相互作用和热稳定性。[PH]+[Br]−对具有优异的轨道稳定性(E(2) = 10.73 kcal/mol)和较低的旋转势垒,是催化应用的理想选择。这项全面的计算研究为IL设计提供了基本的见解,突出了电子结构,电荷分布和分子间相互作用之间的相互作用。研究结果为开发用于绿色化学和能源应用的稳定、反应性il建立了框架,其中[PH]+[Br]−成为一种特别高效的体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FlatChem
FlatChem Multiple-
CiteScore
8.40
自引率
6.50%
发文量
104
审稿时长
26 days
期刊介绍: FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信