{"title":"Novel 2D/3D BiOBr/TiO2 S-scheme heterostructures photocatalyst fabrication for remarkable ciprofloxacin degradation under solar light","authors":"Mohd. Shkir, Atif Mossad Ali","doi":"10.1016/j.flatc.2025.100891","DOIUrl":null,"url":null,"abstract":"<div><div>The creation of sophisticated S-scheme heterojunction photocatalysts presents a pioneering approach to enhance pollutant degradation through improved charge separation and light absorption. This study introduces a novel 2D/3D BiOBr/TiO<sub>2</sub> S-scheme heterojunction photocatalyst designed to elevate the degradation efficiency of ciprofloxacin (CIP), an antibiotic contaminant, when exposed to natural sunlight. Characterization of the structure and morphology confirmed the successful integration of BiOBr nanosheets onto TiO<sub>2</sub> nanoparticles, resulting in an optimized heterostructure. Both TiO<sub>2</sub> and the BiOBr-modified TiO<sub>2</sub> (BiOBr/TiO<sub>2</sub>) were synthesized using a facile hydrothermal method followed by a slow evaporation process. The BiOBr/TiO<sub>2</sub> composite exhibited significantly enhanced visible-light absorption compared to pure TiO<sub>2</sub>, attributed to the light-absorbing properties of BiOBr and the effective formation of the S-scheme heterojunction. This configuration facilitated efficient charge separation, as demonstrated by photoluminescence (PL) quenching and decreased charge-transfer resistance observed in electrochemical impedance spectroscopy (EIS) analyses. The S-scheme mechanism enabled selective recombination of low-energy charge carriers while retaining high-energy electrons and holes, thus maximizing redox potential. Under sunlight irradiation, the BiOBr/TiO<sub>2</sub> composite achieved an impressive 93 % photocatalytic degradation of CIP, significantly outperforming both standalone TiO<sub>2</sub> and BiOBr. Trapping experiments highlighted the crucial roles of hydroxyl radicals (•OH<sup>−</sup>) and superoxide radicals (•O<sub>2</sub><sup>−</sup>) as reactive species driving the degradation process. This research underscores the substantial potential of S-scheme heterojunction photocatalysts for advanced wastewater treatment applications, offering a sustainable and effective solution to environmental remediation challenges.</div></div>","PeriodicalId":316,"journal":{"name":"FlatChem","volume":"52 ","pages":"Article 100891"},"PeriodicalIF":5.9000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FlatChem","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452262725000856","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The creation of sophisticated S-scheme heterojunction photocatalysts presents a pioneering approach to enhance pollutant degradation through improved charge separation and light absorption. This study introduces a novel 2D/3D BiOBr/TiO2 S-scheme heterojunction photocatalyst designed to elevate the degradation efficiency of ciprofloxacin (CIP), an antibiotic contaminant, when exposed to natural sunlight. Characterization of the structure and morphology confirmed the successful integration of BiOBr nanosheets onto TiO2 nanoparticles, resulting in an optimized heterostructure. Both TiO2 and the BiOBr-modified TiO2 (BiOBr/TiO2) were synthesized using a facile hydrothermal method followed by a slow evaporation process. The BiOBr/TiO2 composite exhibited significantly enhanced visible-light absorption compared to pure TiO2, attributed to the light-absorbing properties of BiOBr and the effective formation of the S-scheme heterojunction. This configuration facilitated efficient charge separation, as demonstrated by photoluminescence (PL) quenching and decreased charge-transfer resistance observed in electrochemical impedance spectroscopy (EIS) analyses. The S-scheme mechanism enabled selective recombination of low-energy charge carriers while retaining high-energy electrons and holes, thus maximizing redox potential. Under sunlight irradiation, the BiOBr/TiO2 composite achieved an impressive 93 % photocatalytic degradation of CIP, significantly outperforming both standalone TiO2 and BiOBr. Trapping experiments highlighted the crucial roles of hydroxyl radicals (•OH−) and superoxide radicals (•O2−) as reactive species driving the degradation process. This research underscores the substantial potential of S-scheme heterojunction photocatalysts for advanced wastewater treatment applications, offering a sustainable and effective solution to environmental remediation challenges.
期刊介绍:
FlatChem - Chemistry of Flat Materials, a new voice in the community, publishes original and significant, cutting-edge research related to the chemistry of graphene and related 2D & layered materials. The overall aim of the journal is to combine the chemistry and applications of these materials, where the submission of communications, full papers, and concepts should contain chemistry in a materials context, which can be both experimental and/or theoretical. In addition to original research articles, FlatChem also offers reviews, minireviews, highlights and perspectives on the future of this research area with the scientific leaders in fields related to Flat Materials. Topics of interest include, but are not limited to, the following: -Design, synthesis, applications and investigation of graphene, graphene related materials and other 2D & layered materials (for example Silicene, Germanene, Phosphorene, MXenes, Boron nitride, Transition metal dichalcogenides) -Characterization of these materials using all forms of spectroscopy and microscopy techniques -Chemical modification or functionalization and dispersion of these materials, as well as interactions with other materials -Exploring the surface chemistry of these materials for applications in: Sensors or detectors in electrochemical/Lab on a Chip devices, Composite materials, Membranes, Environment technology, Catalysis for energy storage and conversion (for example fuel cells, supercapacitors, batteries, hydrogen storage), Biomedical technology (drug delivery, biosensing, bioimaging)