BiomacromoleculesPub Date : 2024-12-09Epub Date: 2024-11-21DOI: 10.1021/acs.biomac.4c01155
Ye Wu, Cheng Hu, Yaxing Li, Yu Wang, Heng Gong, Cheng Zheng, Qing-Quan Kong, Li Yang, Yunbing Wang
{"title":"A Versatile Composite Hydrogel with Spatiotemporal Drug Delivery of Mesoporous ZnO and Recombinant Human Collagen for Diabetic Infected Wound Healing.","authors":"Ye Wu, Cheng Hu, Yaxing Li, Yu Wang, Heng Gong, Cheng Zheng, Qing-Quan Kong, Li Yang, Yunbing Wang","doi":"10.1021/acs.biomac.4c01155","DOIUrl":"10.1021/acs.biomac.4c01155","url":null,"abstract":"<p><p>Diabetic wounds are increasingly common and challenging to treat due to high infection risks in a high-glucose environment. Effective treatment requires wound dressings that combat infections, while promoting angiogenesis and skin regeneration. This study presents a hydrogel-based drug delivery system made from cellulose designed to accelerate diabetic wound healing by eliminating bacterial infections. The hydrogel, formed by linking phenylboronic acid-grafted oxidized methylcellulose (POMC) with poly(vinyl alcohol) (PVA), exhibits self-healing and injectable properties. It is further enhanced by adding type I recombinant human collagen (rhCOL1) to stimulate cell growth and angiogenesis and mesoporous zinc oxide (mZnO) for antibacterial and anti-inflammatory effects. Upon application, the hydrogel degrades under pH/ROS stimuli, releasing mZnO and rhCOL1 in a controlled manner that matches the wound healing stages. In vivo tests show that the hydrogel effectively eliminates bacteria, reduces inflammation, and promotes rapid skin regeneration, making it a promising solution for treating diabetic wounds.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7878-7893"},"PeriodicalIF":5.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomacromoleculesPub Date : 2024-12-09Epub Date: 2024-11-06DOI: 10.1021/acs.biomac.4c01172
Ji-Hyun Cho, Kwang-Hyun Ryu, Hyun-Joong Kim, Jong-Ho Back
{"title":"Fabrication and Enhanced Flexibility of Starch-Based Cross-Linked Films.","authors":"Ji-Hyun Cho, Kwang-Hyun Ryu, Hyun-Joong Kim, Jong-Ho Back","doi":"10.1021/acs.biomac.4c01172","DOIUrl":"10.1021/acs.biomac.4c01172","url":null,"abstract":"<p><p>The development of sustainable materials has driven significant interest in starch as a renewable and biodegradable polymer. However, the inherent brittleness, hydrophilicity, and lack of thermoplasticity of native starch limit its application in material science. This study addresses the limitations of native starch by converting it to dialdehyde starch (DAS) and cross-linking with polyether diamines via imine bonds. The effects of Jeffamine molecular weights (D-2000, D-400, and D-230) and mole ratios on the mechanical, thermal, and structural properties of starch-based films were examined. The cross-linked DAS/Js films exhibited significant enhancements in flexibility and toughness. Specifically, DAS/J2000 at a 0.03 mol ratio achieved a tensile strength of 62.9 MPa. In comparison, DAS/J400 at a 0.5 mol ratio demonstrated 126.2% elongation at break, indicating the balance between cross-linking density and chain mobility. X-ray diffraction (XRD) analysis revealed reduced crystallinity and tighter molecular packing with increased cross-linking. Dynamic mechanical analysis (DMA) indicated a decrease in Tg with an increasing mole ratio, reflecting enhanced molecular mobility. The results underscore the potential of optimized cross-linking conditions to produce starch-based films with properties that contribute to developing sustainable biopolymer materials.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7894-7903"},"PeriodicalIF":5.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomacromoleculesPub Date : 2024-12-09Epub Date: 2024-11-21DOI: 10.1021/acs.biomac.4c01081
Stella P Petrova, Zhaoxi Zheng, Daniel Alves Heinze, Valerie Vaissier Welborn, Michael J Bortner, Klaus Schmidt-Rohr, Kevin J Edgar
{"title":"Gelation during Ring-Opening Reactions of Cellulosics with Cyclic Anhydrides: Phenomena and Mechanisms.","authors":"Stella P Petrova, Zhaoxi Zheng, Daniel Alves Heinze, Valerie Vaissier Welborn, Michael J Bortner, Klaus Schmidt-Rohr, Kevin J Edgar","doi":"10.1021/acs.biomac.4c01081","DOIUrl":"10.1021/acs.biomac.4c01081","url":null,"abstract":"<p><p>Cellulose esters are used in Food and Drug Administration-approved oral formulations, including in amorphous solid dispersions (ASDs). Some bear substituents with terminal carboxyl moieties (e.g., hydroxypropyl methyl cellulose acetate succinate (HPMCAS)); these ω-carboxy ester substituents enhance interactions with drug molecules in solid and solution phases and enable pH-responsive drug release. However, the synthesis of carboxyl-pendent cellulose esters is challenging, partly due to competing reactions between introduced carboxyl groups and residual hydroxyls on different chains, forming either physically or covalently cross-linked systems. As we explored ring-opening reactions of cyclic anhydrides with cellulose and its esters to prepare polymers designed for high ASD performance, we became concerned upon encountering gelation. Herein, we probe the complexity of such ring-opening reactions in detail, for the first time, utilizing rheometry and solid-state <sup>13</sup>C NMR spectroscopy. Gelation in these ring-opening reactions was caused predominantly by physical interactions, progressing in some cases to covalent cross-links over time.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7777-7787"},"PeriodicalIF":5.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142685404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomacromoleculesPub Date : 2024-12-09Epub Date: 2024-11-25DOI: 10.1021/acs.biomac.4c01287
Kai Lu, Xiaohong Lan, Rudy Folkersma, Vincent S D Voet, Katja Loos
{"title":"Borax Cross-Linked Acrylamide-Grafted Starch Self-Healing Hydrogels.","authors":"Kai Lu, Xiaohong Lan, Rudy Folkersma, Vincent S D Voet, Katja Loos","doi":"10.1021/acs.biomac.4c01287","DOIUrl":"10.1021/acs.biomac.4c01287","url":null,"abstract":"<p><p>The biocompatibility and renewability of starch-based hydrogels have made them popular for applications across various sectors. Their tendency to incur damage after repeated use limits their effectiveness in practical applications. Improving the mechanical properties and self-healing of hydrogels simultaneously remains a challenge. This study introduces a new self-healing hydrogel, synthesized by grafting acrylamide onto starch using ceric ammonium nitrate (CAN) as an initiator, followed by borax cross-linking. We systematically examined how the starch-to-monomer ratio, borax concentration, and CAN concentration impact the grafting reactions and overall performance of the hydrogels. The addition of borax significantly reinforced the strength of the hydrogel; the maximum storage modulus increased by 1.8 times. Thanks to dynamic borate ester and hydrogen bonding, the hydrogel demonstrated remarkable recovery properties and responsiveness to temperature. We expect that the present research could broaden the application of starch-based hydrogels in agriculture, sensors, and wastewater treatment.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"8026-8037"},"PeriodicalIF":5.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11632664/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142708496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomacromoleculesPub Date : 2024-12-09Epub Date: 2024-11-02DOI: 10.1021/acs.biomac.4c01149
Yi Ju, Junjie Wang, Yang Lei, Yunbing Wang
{"title":"Powdered Medical Adhesive with Long Lasting Adhesion in Water Environment.","authors":"Yi Ju, Junjie Wang, Yang Lei, Yunbing Wang","doi":"10.1021/acs.biomac.4c01149","DOIUrl":"10.1021/acs.biomac.4c01149","url":null,"abstract":"<p><p>Medical adhesives have been used under surgical conditions. However, it is always a big challenge to maintain long-term adhesion in a water environment. Besides, it usually takes a long time to complete the adhesion, and the operation might be complicated. In this study, tannic acid and gelatin solution under acidic conditions were mixed, flocculated, lyophilized, and crushed; thus, a powdered medical adhesive (POWDER) was prepared with long-lasting adhesion in a water environment, convenience, and low price. Tannic acid bound gelatin and maintained adhesive force primarily through hydrogen bonding and reacted with amino sulfhydryl and other amino acid residues after oxidation into aldehyde, exhibiting excellent underwater adhesion. Oxidized dextran (ODex) powder rich in an aldehyde group was introduced to provide covalent binding in the adhesive. In vitro and in vivo studies showed that POWDER could quickly adhere to various tissues in the water environment. In vitro skin adhesion experiments demonstrated that it could achieve effective adhesion in a water environment for up to 60 days. Its blood compatibility, low cytotoxicity, and biodegradability were also verified. The POWDER developed in this study is of great significance for patients who need rapid wound treatments.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7869-7877"},"PeriodicalIF":5.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142563523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomacromoleculesPub Date : 2024-12-09Epub Date: 2024-11-14DOI: 10.1021/acs.biomac.4c01023
Chen Zhang, Hua Zhao, Shanshan Geng, Chenghao Li, Jingmei Liu, Yuxin Chen, Ming Yi, Yuntong Liu, Fangxia Guan, Minghao Yao
{"title":"Adhesive, Stretchable, and Photothermal Antibacterial Hydrogel Dressings for Wound Healing of Infected Skin Burn at Joints.","authors":"Chen Zhang, Hua Zhao, Shanshan Geng, Chenghao Li, Jingmei Liu, Yuxin Chen, Ming Yi, Yuntong Liu, Fangxia Guan, Minghao Yao","doi":"10.1021/acs.biomac.4c01023","DOIUrl":"10.1021/acs.biomac.4c01023","url":null,"abstract":"<p><p>Dressings for infectious skin burn wounds at joints should have therapeutic functions as well as high tissue-adhesion, stretching, and self-healing properties. This makes it difficult for most hydrogel dressings to simultaneously meet the above-mentioned requirements. In this study, poly(vinyl alcohol), anhydrous sodium borax, epigallocatechin gallate, and copper chloride were used to prepare a hydrogel dressing (PBEC) for the infected burn wound healing at joints. The PBEC hydrogel can adhere to a variety of substrates, has a stretching capacity, and quickly self-healing after being damaged. Additionally, the PBEC hydrogel has the properties of reactive oxygen species scavenging, photothermal sterilization, hemostatic ability, and biocompatibility. Finally, the hydrogel could accelerate the process of wound healing in vivo, especially with the assistance of near-infrared radiation. Therefore, the hydrogel dressing shows great potential for clinical application in the healing of infected burn wounds at joints.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7750-7766"},"PeriodicalIF":5.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding the Role of Surface Chemistry in Nanocellulose Kink Formation: A Case Study of TEMPO-Mediated Oxidation.","authors":"Yixiang Zhen, Chengcheng Peng, Huimin Gao, Liang Bai, Yan Song, Pingping Gao, Yadong Zhao","doi":"10.1021/acs.biomac.4c01082","DOIUrl":"10.1021/acs.biomac.4c01082","url":null,"abstract":"<p><p>This study found that the sources of cellulose have a significant effect on the parameters related to the kinks present in nanocellulose. During nanocellulose preparation, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-mediated oxidation induced partial depolymerization on whole cellulose and made the amorphous regions more susceptible to consequent mechanical treatment irrespective of cellulose sources. However, plant cellulose microfibrils were prone to break into shorter nanocellulose with fewer kinks, while bacterial and tunicate cellulose were more likely to bend rather than break, thus leading to the generation of more kinks. The kinks did not show significant effects on the size, crystallinity index, and thermal properties of nanocellulose for each cellulose source, though the kink numbers were positively related to the mechanical performance of nanocellulose. Collectively, this study elucidated the kink formation mechanisms and clarified the effects of kinks on nanocellulose performance, thus providing new insights into understanding the source and behaviors of microdefects present in nanocellulose.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7767-7776"},"PeriodicalIF":5.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
BiomacromoleculesPub Date : 2024-12-09Epub Date: 2024-11-13DOI: 10.1021/acs.biomac.4c01230
Zhichen Zhu, Xingyu Heng, Fangjian Shan, He Yang, Yichen Wang, Hengyuan Zhang, Gaojian Chen, Hong Chen
{"title":"Customizable Glycopolymers as Adjuvants for Cancer Immunotherapy: From Branching Degree Optimization to Cell Surface Engineering.","authors":"Zhichen Zhu, Xingyu Heng, Fangjian Shan, He Yang, Yichen Wang, Hengyuan Zhang, Gaojian Chen, Hong Chen","doi":"10.1021/acs.biomac.4c01230","DOIUrl":"10.1021/acs.biomac.4c01230","url":null,"abstract":"<p><p>Engineering dendritic cell (DC) maturation is paramount for robust T-cell responses and immunological memory, critical for cancer immunotherapy. This work unveils a novel strategy using precisely controlled branching in synthetic glycopolymers to optimize DC activation. Using the distinct copolymerization kinetics of 2-(methacrylamido) glucopyranose (MAG) and diethylene glycol dimethacrylate (DEGDMA) in a RAFT polymerization, unique glycopolymers with varying branching degrees are created. These strategically produced gradient branched glycopolymers with sugar moieties on the outer chain potently promote DC maturation. Strikingly, low-branched glycopolymers demonstrate superior activity, both in pure form and when engineered on tumor cell surfaces. Quartz crystal microbalance and theoretical simulations elucidate the crucial role of branching in modulating glycopolymer-DC receptor interactions. Low-branched gradient glycopolymers have shown a notable advantage and are promising adjuvants in DC-based cancer immunotherapy.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7975-7984"},"PeriodicalIF":5.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142612613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dendrimer/Copper(II) Complex-Mediated siRNA Delivery Disrupts Lactate Metabolism to Reprogram the Local Immune Microenvironment against Tumor Growth and Metastasis.","authors":"Yue Gao, Aiyu Li, Yanying Li, Honghua Guo, Liangyu He, Kangan Li, Dzmitry Shcharbin, Xiangyang Shi, Mingwu Shen","doi":"10.1021/acs.biomac.4c01249","DOIUrl":"10.1021/acs.biomac.4c01249","url":null,"abstract":"<p><p>Solid tumors reprogram metabolic pathways to meet their biosynthesis demands, resulting in elevated levels of metabolites in the tumor microenvironment (TME), including lactate. Excessive accumulation and active transportation of lactate within the TME drives tumor progression, metastasis, and immunosuppression. Interruption of TME lactate metabolism is expected to restore antitumor responses and sensitize tumor immunotherapy. Herein, we developed phenylboronic acid- and pyridine-modified poly(amidoamine) dendrimer/copper(II) (Cu(II)) complexes, namely, D-Cu complexes, to deliver monocarboxylate transporter 4 siRNA (siMCT4) and disrupt the tumor lactate shuttle. The D-Cu complexes are shown to have a Cu(II)-mediated chemodynamic effect and <i>T</i><sub><i>1</i></sub>-weighted magnetic resonance imaging potential (<i>r</i><sub><i>1</i></sub> relaxivity = 1.19 mM<sup>-1</sup> s<sup>-1</sup>), enabling effective siMCT4 delivery to inhibit lactate efflux within cancer cells. In combination with a CD11b immune agonist, the treatment of D-Cu/siMCT4 polyplexes in a mouse breast tumor model alleviates local TME immunosuppression, leading to excellent inhibition of both primary tumor growth and lung metastasis.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7995-8005"},"PeriodicalIF":5.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biobased Sulfur- and Phosphate-Containing High-Refractive-Index Polymers: Substituent Effects on Optical Properties of Polymers.","authors":"Zongao Dou, Hemin Zhang, Jiajun Li, Jing Sun, Qiang Fang","doi":"10.1021/acs.biomac.4c01291","DOIUrl":"10.1021/acs.biomac.4c01291","url":null,"abstract":"<p><p>Four biobased phosphate-containing aryl monomers with methoxy, allyl, and vinyl groups as substituents have been successfully synthesized. Copolymerizing these monomers with thiophenol or mercaptans via the photoclick thiol-ene reaction gives the polymers with refractive indices (<i>n</i><sub>D</sub>) of 1.63-1.70 and Abbe numbers (<i>v</i><sub>D</sub>) of 12.8-38.5. An investigation of the relationship of the <i>v</i><sub>D</sub> values with the substituents on the benzene rings of the monomers indicates that methoxy and vinyl groups can collectively increase the <i>v</i><sub>D</sub> values. In comparison with allyl groups, vinyl groups endow the polymers with both higher <i>n</i><sub>D</sub> and <i>v</i><sub>D</sub>. Moreover, these polymers also display high transmittance, high thermostability, and low haze values in the visible-light region, suggesting that these biobased functional monomers are satisfactory precursors used in the fabrication of optical devices.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"8038-8045"},"PeriodicalIF":5.5,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}