{"title":"蔗糖和三氯蔗糖对明胶凝胶化的影响。","authors":"Yasuyuki Maki, Koichi Matsuo, Masahiko Annaka","doi":"10.1021/acs.biomac.5c01715","DOIUrl":null,"url":null,"abstract":"<p><p>It is well-known that sugars such as sucrose increase the gelling temperature and mechanical properties of gelatin. In this study, the effects of sucrose and sucralose, a sucrose derivative obtained by the chlorination of sucrose, on the gelation behavior of gelatin were investigated. The gelation of gelatin, monitored by rheological properties and helix formation, was enhanced by the addition of sucrose but inhibited by the addition of sucralose. For both sucrose and sucralose, the gelation kinetics were governed by the undercooling from the gelling temperature. To gain insights into the mechanisms by which sucrose and sucralose stabilize and destabilize gelatin gels, respectively, the preferential solvation of a collagen model peptide in aqueous solutions of sucrose or sucralose was measured using small-angle X-ray scattering. The observed preferential solvation behavior of the peptide was consistent with the results of the effect of these sugars on the gelation behavior of gelatin.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Sucrose and Sucralose on the Gelation of Gelatin.\",\"authors\":\"Yasuyuki Maki, Koichi Matsuo, Masahiko Annaka\",\"doi\":\"10.1021/acs.biomac.5c01715\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is well-known that sugars such as sucrose increase the gelling temperature and mechanical properties of gelatin. In this study, the effects of sucrose and sucralose, a sucrose derivative obtained by the chlorination of sucrose, on the gelation behavior of gelatin were investigated. The gelation of gelatin, monitored by rheological properties and helix formation, was enhanced by the addition of sucrose but inhibited by the addition of sucralose. For both sucrose and sucralose, the gelation kinetics were governed by the undercooling from the gelling temperature. To gain insights into the mechanisms by which sucrose and sucralose stabilize and destabilize gelatin gels, respectively, the preferential solvation of a collagen model peptide in aqueous solutions of sucrose or sucralose was measured using small-angle X-ray scattering. The observed preferential solvation behavior of the peptide was consistent with the results of the effect of these sugars on the gelation behavior of gelatin.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.5c01715\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c01715","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effect of Sucrose and Sucralose on the Gelation of Gelatin.
It is well-known that sugars such as sucrose increase the gelling temperature and mechanical properties of gelatin. In this study, the effects of sucrose and sucralose, a sucrose derivative obtained by the chlorination of sucrose, on the gelation behavior of gelatin were investigated. The gelation of gelatin, monitored by rheological properties and helix formation, was enhanced by the addition of sucrose but inhibited by the addition of sucralose. For both sucrose and sucralose, the gelation kinetics were governed by the undercooling from the gelling temperature. To gain insights into the mechanisms by which sucrose and sucralose stabilize and destabilize gelatin gels, respectively, the preferential solvation of a collagen model peptide in aqueous solutions of sucrose or sucralose was measured using small-angle X-ray scattering. The observed preferential solvation behavior of the peptide was consistent with the results of the effect of these sugars on the gelation behavior of gelatin.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.