Electrochimica Acta最新文献

筛选
英文 中文
Enhanced Long-Term Stability of Zinc-Air Batteries Using a Quaternized PVA-Chitosan Composite Separator with Thin-Layered MoS2 使用带有薄层 MoS2 的季铵化 PVA-壳聚糖复合分离器增强锌-空气电池的长期稳定性
IF 6.6 3区 材料科学
Electrochimica Acta Pub Date : 2024-11-15 DOI: 10.1016/j.electacta.2024.145361
Nuttapon Suppanucroa, Warunyoo Yoopensuk, Jirapha Pimoei, Wacharapisuth Thanapong-a-morn, Wathanyu Kao-Ian, Phakkhananan Pakawanit, Falko Mahlendorf, Soorathep Kheawhom, Anongnat Somwangthanaroj
{"title":"Enhanced Long-Term Stability of Zinc-Air Batteries Using a Quaternized PVA-Chitosan Composite Separator with Thin-Layered MoS2","authors":"Nuttapon Suppanucroa, Warunyoo Yoopensuk, Jirapha Pimoei, Wacharapisuth Thanapong-a-morn, Wathanyu Kao-Ian, Phakkhananan Pakawanit, Falko Mahlendorf, Soorathep Kheawhom, Anongnat Somwangthanaroj","doi":"10.1016/j.electacta.2024.145361","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145361","url":null,"abstract":"Due to their high energy density and cost-effectiveness, rechargeable zinc-air batteries (ZABs) are increasingly recognized for their potential as long-duration energy storage solutions. A crucial component for maximizing their efficiency is the membrane separator, which must exhibit high hydroxide-ion conductivity and long-term stability. This study introduces an innovative hybrid composite separator, created by embedding thin-layered molybdenum disulfide (MoS<sub>2</sub>), known for its intrinsic negative charge, into a polycationic quaternized PVA-chitosan (CS) matrix. Polyvinyl alcohol (PVA) is functionalized with quaternary ammonium (QA) groups before being combined with CS and MoS<sub>2</sub>, using a solvent blending technique. The separator's three-dimensional structure and morphology is analyzed via synchrotron radiation X-ray tomographic microscopy (SR-XTM). Results demonstrate that the ZAB equipped with a quaternized PVA/CS/0.5 wt.% MoS<sub>2</sub> composite separator achieved a high conductivity of 87.3 mS cm<sup>-1</sup> and exceptional stability, enduring over 465 cycles. This performance is attributed to the synergistic interaction between the quaternized PVA-CS matrix and the MoS<sub>2</sub> surface, forming robust polymer complexes through electrostatic interactions. These findings suggest that the developed separators hold significant promise for advanced ZAB applications.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"13 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corrigendum to the author information of “Solvent-derived inorganic F and N-rich solid electrolyte interface for stable lithium metal batteries” [Electrochimica Acta, Volume 503, 2024, 144909] 用于稳定锂金属电池的溶剂型无机 F 和富含 N 的固体电解质界面"[《Electrochimica Acta》,第 503 卷,2024 期,144909] 作者信息更正
IF 6.6 3区 材料科学
Electrochimica Acta Pub Date : 2024-11-15 DOI: 10.1016/j.electacta.2024.145333
Lei Zhang, Bing Sun, Qinghua Liu, Lin Song, Teibang Zhang, Xiaobo Duan
{"title":"Corrigendum to the author information of “Solvent-derived inorganic F and N-rich solid electrolyte interface for stable lithium metal batteries” [Electrochimica Acta, Volume 503, 2024, 144909]","authors":"Lei Zhang, Bing Sun, Qinghua Liu, Lin Song, Teibang Zhang, Xiaobo Duan","doi":"10.1016/j.electacta.2024.145333","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145333","url":null,"abstract":"It has come to our attention that we misspelled the name of the corresponding author,","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"18 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Guidance for targeted degradation analysis of OER kinetics of low-loading iridium-based catalysts in PEM water electrolysis cells 指导对 PEM 水电解槽中低负载铱基催化剂的 OER 动力学进行有针对性的降解分析
IF 6.6 3区 材料科学
Electrochimica Acta Pub Date : 2024-11-15 DOI: 10.1016/j.electacta.2024.145360
Mirjam Rogler, Richard Wagner, Simon Thiele, Michel Suermann
{"title":"Guidance for targeted degradation analysis of OER kinetics of low-loading iridium-based catalysts in PEM water electrolysis cells","authors":"Mirjam Rogler, Richard Wagner, Simon Thiele, Michel Suermann","doi":"10.1016/j.electacta.2024.145360","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145360","url":null,"abstract":"This paper critically evaluates three methods for determining metrics of the oxygen evolution reaction (OER) describing the performance and stability of low-loading iridium-based anode catalyst layers (CLs) in proton exchange membrane water electrolysis (PEMWE) cells. The methods applied are OER mass activity, voltage breakdown analysis (VBA), and constant Tafel slope VBA (CT-VBA). They are used to assess the OER metrics as a function of anode CL configurations, potential cycling, and level of degradation. Therefore, various accelerated stress tests (ASTs) are carried out for a targeted degradation of different anode CLs based on Ir black or Ir oxide. It turns out that the OER mass activity method is robust, straightforward and an ideal method for e.g., in-house screening tasks. On the other hand, the VBA method is suitable for comparative analysis across laboratories by distinguishing between the three main overpotentials. The CT-VBA method, however, offers improved accuracy, as it accounts for mass transport overpotential at low current density, and is particularly suitable for determining apparent exchange current density values further used in modelling approaches. This benefit comes with a drawback, as commonly accepted reference Tafel slopes for respective catalyst type and PTL configurations would be required within the PEMWE community. This guidance therefore helps to choose the right method for determining OER metrics depending on the research question.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"25 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637833","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile sulfur chemistry assisted carbon reconfiguration for efficient potassium ion electrochemical storage 硫化学辅助碳重构,实现高效钾离子电化学储存
IF 5.5 3区 材料科学
Electrochimica Acta Pub Date : 2024-11-15 DOI: 10.1016/j.electacta.2024.145347
Zhi Liu , Ningning Chen , Wanying Guo , Yinshuang Pang , Nailu Shen , Hong Chen , Wanying Zhang , Feichang Feng , Jingxiang Zhao , Yanyu Liang
{"title":"Facile sulfur chemistry assisted carbon reconfiguration for efficient potassium ion electrochemical storage","authors":"Zhi Liu ,&nbsp;Ningning Chen ,&nbsp;Wanying Guo ,&nbsp;Yinshuang Pang ,&nbsp;Nailu Shen ,&nbsp;Hong Chen ,&nbsp;Wanying Zhang ,&nbsp;Feichang Feng ,&nbsp;Jingxiang Zhao ,&nbsp;Yanyu Liang","doi":"10.1016/j.electacta.2024.145347","DOIUrl":"10.1016/j.electacta.2024.145347","url":null,"abstract":"<div><div>Carbon-based materials are commonly used as anodes for potassium-ion batteries due to their high conductivity and stable cycling performance. However, their practical application is greatly hindered by their low capacity. Herein, we introduce facile sulfur chemistry including thioether bonds and CoS₂ into a nitrogen-oxygen co-doped partially graphitized carbon skeleton (NOGC), while the extra reconfiguration process of carbon assists forming the CoS₂@R-NOGC composites. The reconfigured NOGC (R-NOGC), enriched with highly electronegative elements (N, O, S), significantly enhances the reversible potassium ion storage capacity. The ordered carbon structure provides more efficient ionic transport pathways, thereby improving K⁺ transport efficiency. Moreover, layered CoS₂ acts as additional ion transport channels and active sites, further enhancing ion mobility and storage capacity. R-NOGC also promotes the reconstruction and repair of the solid electrolyte interface (SEI) layer to form a more robust interface. As a result of the synergistic effect between R-NOGC and CoS₂, it exhibits excellent anode performance, including a high reversible capacity (314.0 mAh/g at 0.1 A/g) and long-term stability (250.3 mAh/g at 0.5 A/g after 1,000 cycles). This work presents a novel strategy for designing and synthesizing high-performance anode materials for potassium-ion batteries, significantly enhancing both capacity and cycling stability.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"509 ","pages":"Article 145347"},"PeriodicalIF":5.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of ammoniacal thiosulfate solution composition on the gold dissolution rate: An electrochemical study 硫代硫酸铵溶液成分对金溶解速率的影响:电化学研究
IF 6.6 3区 材料科学
Electrochimica Acta Pub Date : 2024-11-15 DOI: 10.1016/j.electacta.2024.145359
José A. Tamayo, Carolina Ramírez-Sánchez, Jorge A. Calderón
{"title":"Effect of ammoniacal thiosulfate solution composition on the gold dissolution rate: An electrochemical study","authors":"José A. Tamayo, Carolina Ramírez-Sánchez, Jorge A. Calderón","doi":"10.1016/j.electacta.2024.145359","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145359","url":null,"abstract":"The electrochemical behavior of ammoniacal thiosulfate solutions (S<sub>2</sub>O<sub>3</sub><sup>2-</sup>- NH3-Cu<sup>2+</sup> -EDTA) has been studied for varying electrolyte compositions in the gold electro-dissolution. A gold rotating disk electrode (RDE) was employed to measure anodic and cathodic polarization curves in alkaline thiosulfate solutions. Potentiodynamic polarization showed how thiosulfate, ammonia, and copper concentration influence the cathodic and anodic behavior of the electrolyte. Likewise, the influence of oxygen on the electrochemical behavior system was evidenced from the analysis of polarization curves, and using Koutecky – Levich equation (slope of 59.60 mV/decade), it was possible to determine the peroxide pathway for oxygen reduction reaction (ORR) with two-electron transference. Additionally, gold dissolution and thiosulfate degradation were evaluated using the gold foil leaching tests. It was found solutions with a 0.2 mol L<sup>-1</sup> thiosulfate concentration favored the dissolution of gold and by maintaining an adequate ratio between thiosulfate/ammonium (1:3) or thiosulfate/copper (4:1) enable the attainment high gold dissolution and lower degradation of thiosulfate.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"38 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142637831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational Screening of Transition Metal-Nitrogen-Carbon Materials as Electrocatalysts for CO2 Reduction 计算筛选作为二氧化碳还原电催化剂的过渡金属-氮-碳材料
IF 6.6 3区 材料科学
Electrochimica Acta Pub Date : 2024-11-14 DOI: 10.1016/j.electacta.2024.145357
Megan C. Davis, Wilton J.M. Kort-Kamp, Edward F. Holby, Piotr Zelenay, Ivana Matanovic
{"title":"Computational Screening of Transition Metal-Nitrogen-Carbon Materials as Electrocatalysts for CO2 Reduction","authors":"Megan C. Davis, Wilton J.M. Kort-Kamp, Edward F. Holby, Piotr Zelenay, Ivana Matanovic","doi":"10.1016/j.electacta.2024.145357","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145357","url":null,"abstract":"Atomically dispersed M-N-C catalysts are a promising, cost-effective class of materials for reducing CO<sub>2</sub> to value-added products through the CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR). However, complex multi-objective optimization of several properties including catalyst stability, activity, and selectivity for target products are necessary to make CO<sub>2</sub>RR more efficient with this class of catalysts. We systematically investigate activity and selectivity for carbon monoxide, formic acid, and hydrogen evolution pathways on model M-N<sub>4</sub>C<sub>10</sub> active sites for 26 transition metal species. Our work shows that under acidic conditions, all the considered M-N<sub>4</sub>C<sub>10</sub> sites except M=Fe, Co, Cr, Cd, and Pt should have CO<sub>2</sub>RR onset potentials lower than the hydrogen evolution reaction. We identify the transition metal active sites that should catalyze the CO pathway, leading to gaseous CO production, CO poisoning, or reduction to further products. To understand the reasons for predicted activity and selectivity, we furthermore correlate atomic features for the transition metals with the calculated onset potential of each pathway, showing moderate correlation between both electronegativity and atomic radii with the CO<sub>2</sub>RR onset potentials. The high-throughput and feature-based approach in this work not only serves as a guide for present experimental efforts but can also serve as a starting point for machine learning efforts to accelerate active site modeling and catalyst discovery.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"163 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Sr2+ doping on the structure and electrical properties of hexagonal perovskite Ba7-xSrxNb4MoO20-δ electrolyte: experimental and DFT modeling studies 掺杂 Sr2+ 对六方包晶 Ba7-xSrxNb4MoO20-δ 电解质结构和电学特性的影响:实验和 DFT 建模研究
IF 6.6 3区 材料科学
Electrochimica Acta Pub Date : 2024-11-14 DOI: 10.1016/j.electacta.2024.145351
Shi Li, Maokai Yin, Pirong Shi, Xiangnan Wang, Peng Qiu, Jie Wu, Ye Han
{"title":"Effect of Sr2+ doping on the structure and electrical properties of hexagonal perovskite Ba7-xSrxNb4MoO20-δ electrolyte: experimental and DFT modeling studies","authors":"Shi Li, Maokai Yin, Pirong Shi, Xiangnan Wang, Peng Qiu, Jie Wu, Ye Han","doi":"10.1016/j.electacta.2024.145351","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145351","url":null,"abstract":"Ba<sub>7</sub>Nb<sub>4</sub>MoO<sub>20</sub> exhibits excellent oxygen ion transport properties and is a promising electrolyte material for solid oxide fuel cell (SOFC). To further enhance its oxygen ionic conductivity, element doping is an effective strategy. However, few studies have delved into the impact mechanism of doping strategies on the electrolyte's conductivity properties from the perspective of electronic structure. Here, the enhancement mechanism of oxygen ionic conductivity in Ba<sub>7</sub>Nb<sub>4</sub>MoO<sub>20</sub> was analyzed using the the methods of density of states (DOS) and Crystal Orbital Hamilton Populations (COHP). Since the electronic conductivities of the electrolytes are negligible, their total conductivies can essentially be regarded as the conductivies of oxygen ions. As the Sr doping amount increases, the oxygen ionic conductivities of the electrolytes also increase. The bulk conductivity shows a negative correlation with the Sr doping amount, which is due to the higher bond energy of Sr-O compared to Ba-O. On the other hand, Sr promotes grain growth and reduces the number of grain boundaries, thereby decreasing the resistance to oxygen diffusion at the grain boundaries and thus enhancing the grain boundary conductivity. In the Ba<sub>7-</sub><em><sub>x</sub></em>Sr<em><sub>x</sub></em>Nb<sub>4</sub>MoO<sub>20-δ</sub> (<em>x</em>=0, 0.1, 0.2, 0.3, and 0.4) perovskite oxides, Ba<sub>6.6</sub>Sr<sub>0.4</sub>Nb<sub>4</sub>MoO<sub>20-δ</sub> has the highest conductivity, reaching 1.12 × 10<sup>-4</sup>S cm<sup>-1</sup> at 500°C. This work not only develops a SOFC electrolyte material with promising application prospects, but also provides theoretical guidance for its doping modification.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"38 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142610087","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation and application of mixed ligand Zn-MOF as electrode materials for supercapacitors applications 混合配体 Zn-MOF 作为超级电容器电极材料的制备和应用
IF 5.5 3区 材料科学
Electrochimica Acta Pub Date : 2024-11-13 DOI: 10.1016/j.electacta.2024.145352
Hossein Esfandian, Mohammad Mojtaba Sadeghi
{"title":"Preparation and application of mixed ligand Zn-MOF as electrode materials for supercapacitors applications","authors":"Hossein Esfandian,&nbsp;Mohammad Mojtaba Sadeghi","doi":"10.1016/j.electacta.2024.145352","DOIUrl":"10.1016/j.electacta.2024.145352","url":null,"abstract":"<div><div>In this study, various mixed-linker metal-organic frameworks (MOFs) based on Zn-MOF were successfully synthesized using different ratios of 1,3,5-benzenetricarboxylic acid (BTC) and 1,4-benzenedicarboxylic acid (BDC) as modulator ligands. The characterization results indicated that a lower percentage of BDC ligand effectively enhances the specific surface area of the MOFs while maintaining their microporous structure. Furthermore, the supercapacitive behavior of the synthesized Zn-MOFs with varying mixed ligand ratios was evaluated through electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic charge-discharge (GCD) measurements in a 6 M KOH electrolyte. Synthesized materials, namely MOF-0 (100 % BTC), MOF-1 (75 % BTC, 25 % BDC), MOF-2 (50 % BTC, 50 % BDC), MOF-3 (25 % BTC, 75 % BDC), and MOF-4 (100 % BDC) were assessed through GCD tests. These tests demonstrated specific capacitance values of 577, 683, 529, 428, and 302 F/g at a current density of 0.5 A/g, respectively. This impressive performance underscores the effectiveness of the mixed-linker strategy in optimizing the electrochemical properties of MOF for energy storage applications.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"509 ","pages":"Article 145352"},"PeriodicalIF":5.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
One-step synthesis of spherical Al3Ta alloy powder by electrolyzing solid Ta2O5 in molten fluorides 在熔融氟化物中电解固体 Ta2O5,一步合成球形 Al3Ta 合金粉末
IF 5.5 3区 材料科学
Electrochimica Acta Pub Date : 2024-11-13 DOI: 10.1016/j.electacta.2024.145354
Yapeng Kong, Longdi Ma, Heng Zhang, Xiwen Chen, Xuemin Liang, Liqiang Wang, Yangyang Fan, Yuran Chen
{"title":"One-step synthesis of spherical Al3Ta alloy powder by electrolyzing solid Ta2O5 in molten fluorides","authors":"Yapeng Kong,&nbsp;Longdi Ma,&nbsp;Heng Zhang,&nbsp;Xiwen Chen,&nbsp;Xuemin Liang,&nbsp;Liqiang Wang,&nbsp;Yangyang Fan,&nbsp;Yuran Chen","doi":"10.1016/j.electacta.2024.145354","DOIUrl":"10.1016/j.electacta.2024.145354","url":null,"abstract":"<div><div>Aluminum-tantalum powders are emerging as new raw materials for additive manufacturing (AM) technologies, but their preparation in bulk quantities and in powder form via conventional metallurgical methods is challenging. In this study, we report a one-step synthesis of spherical Al<sub>3</sub>Ta powder by direct electrolyzing solid Ta<sub>2</sub>O<sub>5</sub> cathode (<em>vs</em>. a graphite anode) in molten Na<sub>3</sub>AlF<sub>6</sub>-K<sub>3</sub>AlF<sub>6</sub>-AlF<sub>3</sub>-LiF-Al<sub>2</sub>O<sub>3</sub>. Cyclic voltammetry and constant potential electrolysis techniques were employed to characterize the electrochemical reaction process, along with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for the structural and morphological analyses. The process involves an initial Ta<sub>2</sub>O<sub>5</sub> electro-deoxygenation process, the subsequent electrodeposition of Al<sup>3+</sup> on the formed Ta particles and an in-situ alloying process. The innovative use of Ta<sub>2</sub>O<sub>5</sub> cathodes with a novel hierarchical porous structure allows for a controlled transformation of cathode particle morphology and facilitates the rapid generation of nanoscale tantalum particles. Al<sup>3+</sup> from the electrolyte is then electrodeposited onto these particles, initiating an in-situ alloying reaction. This is an exothermic process that facilitates the diffusion of aluminum atoms into tantalum, and reduces the interfacial energy promoting the formation of spherical Al<sub>3</sub>Ta particles. Such powders are in demand for AM techniques. The findings may now guide the way to establishing the electrochemical route for the short-process preparation of other high-temperature alloy powders.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"510 ","pages":"Article 145354"},"PeriodicalIF":5.5,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The reduced graphene oxide conductive additives with a certain defect concentration enabling rate-capability of lithium-ion batteries 具有一定缺陷浓度的还原氧化石墨烯导电添加剂可提高锂离子电池的速率能力
IF 6.6 3区 材料科学
Electrochimica Acta Pub Date : 2024-11-13 DOI: 10.1016/j.electacta.2024.145353
Li He, Jiao Peng, Xiaolin Liu, Peng Liu, Juan Yang, Yi Tang, Xianyou Wang
{"title":"The reduced graphene oxide conductive additives with a certain defect concentration enabling rate-capability of lithium-ion batteries","authors":"Li He, Jiao Peng, Xiaolin Liu, Peng Liu, Juan Yang, Yi Tang, Xianyou Wang","doi":"10.1016/j.electacta.2024.145353","DOIUrl":"https://doi.org/10.1016/j.electacta.2024.145353","url":null,"abstract":"Graphene as conductive additives for enhancing the electrochemical performance of commercial cathode materials (e.g., LiFePO<sub>4</sub>, LiCoO<sub>2</sub>, and LiMn<sub>2</sub>O<sub>4</sub>) in advanced Li-ion batteries (LIBs) has attracted great attention in recent years. However, the LiFePO<sub>4</sub> and LiCoO<sub>2</sub> electrodes usually show a poor rate capability when using graphene as the conductive additive, since its planar structure hinders ion transmission. Herein, a variety of reduced graphene oxides (rGO-x) have been successfully prepared using the modified Hummer's method followed by calcination. The results show that due to a large specific area and moderate defect density, rGO-5 can ensure good enough interfacial contact between active material particles and collector, thus maintaining fast electron/ion transportation. It has been found that LiFePO<sub>4</sub> and LiCoO<sub>2</sub> electrodes exhibit good lithium storage properties of 160.95 and 139.41 mA h g<sup>-1</sup> at a rate of 0.1 C when rGO-5 is utilized as a conductivity additive. Meanwhile, combined with the electrochemical impedance and kinetic exploration, it can be seen that the LiFePO<sub>4</sub> and LiCoO<sub>2</sub> electrodes demonstrate a high Li<sup>+</sup> diffusion coefficient (D<sub>Li+</sub>) of 6.7 × 10<sup>-14</sup> cm<sup>2</sup> s<sup>-1</sup> and 4.3 × 10<sup>-13</sup> cm<sup>2</sup> s<sup>-1</sup>, respectively. Therefore, this research sheds new light on the practical utilization of rGO additives in high-performance lithium-ion batteries.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"34 1","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142601803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信