Zr4+协同掺杂和超声处理提高了层状LiV3O8阴极的储钠性能

IF 5.6 3区 材料科学 Q1 ELECTROCHEMISTRY
Qing Han , Yu Niu , Lei Wang , Lingling Xie , Xuejing Qiu , Hongjun Chen , Yuling Wang , Limin Zhu , Xiaoyu Cao
{"title":"Zr4+协同掺杂和超声处理提高了层状LiV3O8阴极的储钠性能","authors":"Qing Han ,&nbsp;Yu Niu ,&nbsp;Lei Wang ,&nbsp;Lingling Xie ,&nbsp;Xuejing Qiu ,&nbsp;Hongjun Chen ,&nbsp;Yuling Wang ,&nbsp;Limin Zhu ,&nbsp;Xiaoyu Cao","doi":"10.1016/j.electacta.2025.147428","DOIUrl":null,"url":null,"abstract":"<div><div>Developing high-performance sodium-ion battery (SIB) cathodes is crucial for their practical deployment. Layered LiV<sub>3</sub>O<sub>8</sub> (LVO) has emerged as a promising candidate due to the multivalence of vanadium, which facilitates multi-electron redox reactions and provides a high theoretical capacity. However, the electrochemical performance of LVO suffers from rapid capacity fading, multiple charge-discharge plateaus, and irreversible phase transitions during cycling. To mitigate these issues, we synthesized LiV<sub>3-<em>x</em></sub>Zr<sub><em>x</em></sub>O<sub>8</sub> with varying Zr<sup>4+</sup> doping levels (<em>x</em> = 0.01, 0.02, 0.03). Among these, LiV<sub>2.98</sub>Zr<sub>0.02</sub>O<sub>8</sub> exhibited superior cycling stability and reversible sodium-ion intercalation. At a current density of 30 mA·g<sup>-1</sup> and within a voltage window of 1.8–4.0 V, it achieved an initial specific discharge capacity of 177.2 mAh·g<sup>-1</sup>, retaining 97.1 mAh·g<sup>-1</sup> after 300 cycles, significantly outperforming the other doping levels. Further enhancements to LiV<sub>2.98</sub>Zr<sub>0.02</sub>O<sub>8</sub> were achieved through ultrasonic and thermal treatment, resulting in the sample designated LiV<sub>2.98</sub>Zr<sub>0.02</sub>O<sub>8</sub> Ut-300. This material demonstrated markedly improved sodium storage performance compared to its untreated form. Electrochemical impedance spectroscopy and galvanostatic intermittent titration technique analyses unveiled that LiV<sub>2.98</sub>Zr<sub>0.02</sub>O<sub>8</sub> Ut-300 possessed the lowest charge transfer resistance and the higher sodium ion diffusion coefficient, approximately 10<sup>–12</sup> cm<sup>2</sup>·s<sup>-1</sup>. This study presents a strategy for high-performance layered metal oxide electrodes to significantly boost SIB energy storage.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"542 ","pages":"Article 147428"},"PeriodicalIF":5.6000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced sodium storage performance of layered LiV3O8 cathodes via synergistic Zr4+ doping and ultrasonic treatment\",\"authors\":\"Qing Han ,&nbsp;Yu Niu ,&nbsp;Lei Wang ,&nbsp;Lingling Xie ,&nbsp;Xuejing Qiu ,&nbsp;Hongjun Chen ,&nbsp;Yuling Wang ,&nbsp;Limin Zhu ,&nbsp;Xiaoyu Cao\",\"doi\":\"10.1016/j.electacta.2025.147428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing high-performance sodium-ion battery (SIB) cathodes is crucial for their practical deployment. Layered LiV<sub>3</sub>O<sub>8</sub> (LVO) has emerged as a promising candidate due to the multivalence of vanadium, which facilitates multi-electron redox reactions and provides a high theoretical capacity. However, the electrochemical performance of LVO suffers from rapid capacity fading, multiple charge-discharge plateaus, and irreversible phase transitions during cycling. To mitigate these issues, we synthesized LiV<sub>3-<em>x</em></sub>Zr<sub><em>x</em></sub>O<sub>8</sub> with varying Zr<sup>4+</sup> doping levels (<em>x</em> = 0.01, 0.02, 0.03). Among these, LiV<sub>2.98</sub>Zr<sub>0.02</sub>O<sub>8</sub> exhibited superior cycling stability and reversible sodium-ion intercalation. At a current density of 30 mA·g<sup>-1</sup> and within a voltage window of 1.8–4.0 V, it achieved an initial specific discharge capacity of 177.2 mAh·g<sup>-1</sup>, retaining 97.1 mAh·g<sup>-1</sup> after 300 cycles, significantly outperforming the other doping levels. Further enhancements to LiV<sub>2.98</sub>Zr<sub>0.02</sub>O<sub>8</sub> were achieved through ultrasonic and thermal treatment, resulting in the sample designated LiV<sub>2.98</sub>Zr<sub>0.02</sub>O<sub>8</sub> Ut-300. This material demonstrated markedly improved sodium storage performance compared to its untreated form. Electrochemical impedance spectroscopy and galvanostatic intermittent titration technique analyses unveiled that LiV<sub>2.98</sub>Zr<sub>0.02</sub>O<sub>8</sub> Ut-300 possessed the lowest charge transfer resistance and the higher sodium ion diffusion coefficient, approximately 10<sup>–12</sup> cm<sup>2</sup>·s<sup>-1</sup>. This study presents a strategy for high-performance layered metal oxide electrodes to significantly boost SIB energy storage.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"542 \",\"pages\":\"Article 147428\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013468625017852\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468625017852","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

高性能钠离子电池(SIB)阴极的开发对其实际应用至关重要。由于钒的多价性,层状的LiV3O8 (LVO)易于多电子氧化还原反应,并提供了较高的理论容量,因此成为了一种有希望的候选材料。然而,LVO的电化学性能在循环过程中存在容量快速衰减、多次充放电平台和不可逆相变等问题。为了缓解这些问题,我们合成了具有不同Zr4+掺杂水平的LiV3-xZrxO8 (x = 0.01,0.02,0.03)。其中,LiV2.98Zr0.02O8具有良好的循环稳定性和可逆的钠离子插入。在电流密度为30 mA·g-1,电压窗为1.8-4.0 V的情况下,其初始比放电容量为177.2 mAh·g-1,在300次循环后保持97.1 mAh·g-1,明显优于其他掺杂水平。通过超声波和热处理对LiV2.98Zr0.02O8进一步增强,得到命名为LiV2.98Zr0.02O8 Ut-300的样品。与未经处理的形式相比,这种材料表现出明显改善的钠储存性能。电化学阻抗谱分析和恒流间歇滴定技术分析表明,LiV2.98Zr0.02O8 ot -300具有最低的电荷转移电阻和较高的钠离子扩散系数,约为10-12 cm2·s-1。本研究提出了一种高性能层状金属氧化物电极的策略,以显着提高SIB能量存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced sodium storage performance of layered LiV3O8 cathodes via synergistic Zr4+ doping and ultrasonic treatment

Enhanced sodium storage performance of layered LiV3O8 cathodes via synergistic Zr4+ doping and ultrasonic treatment

Enhanced sodium storage performance of layered LiV3O8 cathodes via synergistic Zr4+ doping and ultrasonic treatment
Developing high-performance sodium-ion battery (SIB) cathodes is crucial for their practical deployment. Layered LiV3O8 (LVO) has emerged as a promising candidate due to the multivalence of vanadium, which facilitates multi-electron redox reactions and provides a high theoretical capacity. However, the electrochemical performance of LVO suffers from rapid capacity fading, multiple charge-discharge plateaus, and irreversible phase transitions during cycling. To mitigate these issues, we synthesized LiV3-xZrxO8 with varying Zr4+ doping levels (x = 0.01, 0.02, 0.03). Among these, LiV2.98Zr0.02O8 exhibited superior cycling stability and reversible sodium-ion intercalation. At a current density of 30 mA·g-1 and within a voltage window of 1.8–4.0 V, it achieved an initial specific discharge capacity of 177.2 mAh·g-1, retaining 97.1 mAh·g-1 after 300 cycles, significantly outperforming the other doping levels. Further enhancements to LiV2.98Zr0.02O8 were achieved through ultrasonic and thermal treatment, resulting in the sample designated LiV2.98Zr0.02O8 Ut-300. This material demonstrated markedly improved sodium storage performance compared to its untreated form. Electrochemical impedance spectroscopy and galvanostatic intermittent titration technique analyses unveiled that LiV2.98Zr0.02O8 Ut-300 possessed the lowest charge transfer resistance and the higher sodium ion diffusion coefficient, approximately 10–12 cm2·s-1. This study presents a strategy for high-performance layered metal oxide electrodes to significantly boost SIB energy storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信