{"title":"Glove disinfection and aseptic technique: Creating a schema for the cleanroom and laboratory","authors":"Tim Sandle","doi":"10.37521/ejpps.28201","DOIUrl":"https://doi.org/10.37521/ejpps.28201","url":null,"abstract":"There are different elements that contribute to good aseptic technique within the cleanroom and the laboratory. One such element is the donning of gloves (1), handling items appropriately, and keeping gloves regularly disinfected (2). Glove disinfection is an essential step for bacteriological control, although how successful control is maintained is dependent upon the type of disinfectant (these are generally alcohols for gloved hands) (3), frequency of application, volume of disinfectant, application technique and the contact time. Other variables include purchasing gloves of a suitable material and design, and appropriate training. Aa an added control with more critical areas, the gloves are pre sterilised before donning (often purchased sterile by radiation or ethylene oxide). \u0000\u0000As with other types of disinfection, the aim is not ‘sterilisation’ but to bring any bacterial density present on the gloves down to a level that is as low as possible (what is sometimes referred to as the \"irreducible minimum\") (4). Assessment, when required, is commonly through the use of agar contact plates onto the fingertips of each gloved hand (four fingers and the thumb) to create the ‘finger plate’ or ‘finger dab’. To avoid false negatives, the agar needs to be formulated with an appropriate disinfectant neutraliser. \u0000\u0000For cleanroom and laboratory managers seeking to maximise the maintenance of asepsis, glove control is an important element. This should take the form of a good practice schema and for this to be transitioned into a training module, supported by regular prompts in practice. \u0000\u0000In terms of what such a schema should look like, this article appraises the research that underpins an appropriate glove ‘sanitisation’ schema. This includes the central concerns of when and how effective glove disinfection is to be achieved (5). The key findings are that a 30 second disinfection time is suitable for both cleanroom and laboratory operations, provided a suitable technique is deployed and an alcohol-based disinfectant used. However, controls need to be in place to avoid the over disinfection of gloves since repeated applications increase the likelihood of microperforations occurring and thereby effective glove disinfection needs to be supported by a regular glove change procedure.","PeriodicalId":300408,"journal":{"name":"EJPPS EUROPEAN JOURNAL OF PARENTERAL AND PHARMACEUTICAL SCIENCES","volume":"681 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127584557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pharmacopeial sterility test: The statistical limitations of sampling","authors":"Tim Sandle","doi":"10.37521/ejpps.28203","DOIUrl":"https://doi.org/10.37521/ejpps.28203","url":null,"abstract":"For aseptically filled products, as well as for many terminally filled products, the sterility test is a mandatory product release test. It is, however, statistically poor at detecting anything other than gross contamination (this limitation has been addressed in a number of studies (1)). This limitation relates to the few numbers of articles tested (2). For batches in excess of 500 filled containers, the pharmacopeia only require that twenty samples are included in the sterility test set. This sample size appears to have been set arbitrarily, and it does not provide a statistically significant population with which to estimate sterility (3). Although it is unclear how this sample size was derived, the number is grounded, in part, through the sterility test being a destructive test (each article tested via the sterility test is not available for the patient) and therefore to maximise the availability of the batch by using as few units as possible. \u0000\u0000It remains, nonetheless, that the sample size of 20 provides no confidence that the sterility of a batch of pharmaceutical items has not been compromised. \u0000\u0000In relation to sampling, limitations not only apply to the low number of samples tested but also to the difficulties in selecting a sample representative of all significant events during batch filling (4). This is important because contamination is unlikely to be uniformly distributed throughout the batch and thus random sampling cannot detect contamination with absolute certainty. This is of particular importance with aseptic filling where batch specific events can occur. It is possible that certain events can be captured, such as interventions into the aseptic core, where the vials exposed at the time of the activity can be incorporated into the sterility test set (notwithstanding that all events cannot be captured in this way).","PeriodicalId":300408,"journal":{"name":"EJPPS EUROPEAN JOURNAL OF PARENTERAL AND PHARMACEUTICAL SCIENCES","volume":"6 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131024295","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Evaluation of the in-vitro antifungal activity of Holoptelea Integrifolia ethanolic extract loaded in microemulsion","authors":"Priyanka Chaturvedi, P. Sharma","doi":"10.37521/ejpps.28202","DOIUrl":"https://doi.org/10.37521/ejpps.28202","url":null,"abstract":"Microemulsions improve the transdermal delivery of several drugs over conventional topical preparations such as emulsions and gels: enhanced drug solubilization, increased skin flux, and decreased diffusion coefficient. Microemulsion-based systems find significant improvement in the topical delivery of antifungals. We believe that drug-loaded microemulsion will show better antifungal activity by better penetration into the skin and fungal cells. Antifungal agents are mostly lipophilic and easily formulated in topical vehicles. Microemulsions were prepared by the phase titration method. Formulations of the same drug and Excipient ratio and different concentrations were optimized with selected parameters like pseudo ternary phase diagram, particle analysis size, zeta potential validation, entrapment efficiency, and drug release studies performed by dialysis bag diffusion techniques at a temperature (37ºC). The study continued for 24 hours. The maximum amount of drug Holoptelea integrifolia release is 90% within 8hr. The study was monitored at 37ºC. Successfully done preparation, characterization, and drug release study of Microemulsion drug loaded.","PeriodicalId":300408,"journal":{"name":"EJPPS EUROPEAN JOURNAL OF PARENTERAL AND PHARMACEUTICAL SCIENCES","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129089880","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combined novel approach to enhance the solubility and Intestinal absorption: A recent review","authors":"Ambuj Dubey, B. Patel, S. Parmar","doi":"10.37521/ejpps.28103","DOIUrl":"https://doi.org/10.37521/ejpps.28103","url":null,"abstract":"For oral pharmaceutical products to achieve high bioavailability and minimal variability, the API must dissolve and be stable in the GI media as well as sufficiently absorb at pertinent sites in the large intestine and small intestine. The possibility for API absorption from any dosage form is determined by an important biopharmaceutical parameter known as regional intestine effective permeability. For effective estimation of the manufacturing potential of a dosage form, it is especially crucial to understand the quantity of drug absorption from the human large intestine. Drug development is difficult because enhancing a drug's solubility, dissolution, and bioavailability is challenging. Among the four classes of the biopharmaceutical classification system (BCS) major work has been done on the low soluble drugs. In recent years poor solubility has been a major challenge for pharmaceutical scientists and a lot of experimental works are ongoing. Changing polymorphic forms by different new approaches and increase in the surface area is a widely used and comparatively simple method for increasing solubility and making the drug more bioavailable. For achieving the desired effects, permeability (intestinal absorption) is also playing an important role like solubility, but the focus of scientists is less on the permeability enhancement of low permeable drugs in respect of solubility. Sometimes it has been tried but with very limited success. The objective of this paper to provide a comprehensive review on improving solubility, release and intestinal absorption of low soluble and low permeable drugs with a combined novel approach of solubility and absorption enhancement. The ability to produce high soluble and high permeable drugs will grow significantly in the coming years and this will help to grow the revenue of the innovators as well as generic pharmaceutical companies.\u0000\u0000\u0000Keywords: Absorption, Bioavailability, Dissolution, Duodenum, Gastrointestinal tract, Gastrointestinal transit time, Gastroretention, Milling, Permeability, Poorly water-soluble drug(s), Polymer(s), Solvent evaporation, Spray drying","PeriodicalId":300408,"journal":{"name":"EJPPS EUROPEAN JOURNAL OF PARENTERAL AND PHARMACEUTICAL SCIENCES","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133182084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Swathy Govindaswamy, R. Rampriya, Fatima S Saffrin, A. Siranjeevi, Viswanathan Ramachandran, M. Sudharsan
{"title":"Formulation And Evaluation of Controlled Release Bromfenac Sodium Ocular Insert","authors":"Swathy Govindaswamy, R. Rampriya, Fatima S Saffrin, A. Siranjeevi, Viswanathan Ramachandran, M. Sudharsan","doi":"10.37521/ejpps.28102","DOIUrl":"https://doi.org/10.37521/ejpps.28102","url":null,"abstract":"According to the World Health Organization, cataract operations are performed on one million people per year [1]. After cataract surgery, however, most patients still experience physiologically severe postoperative ocular inflammation. Uncontrolled intraocular inflammation causes discomfort, delayed recovery, poor visual results, and even more severe problems such as cystoid macular oedema and synechiae due to inflammatory cells and cytokines entering the aqueous humour. \u0000\u0000\u0000Topical non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used to treat non-infectious ocular inflammation after ophthalmic surgery. As a result, NSAIDs appear to be potentially useful drugs for cataract surgery. [2]\u0000\u0000\u0000The U.S Food and Drug Administration has approved four ophthalmic NSAIDs to treat postoperative ocular inflammation followed by cataract surgery: bromfenac sodium, diclofenac sodium, Ketorolac tromethamine, and nepafenac.[3] The first approved NSAID for treating anterior chamber inflammation during cataract surgical treatment is bromfenac ophthalmic solution. Bromfenac is a more potent drug than other drugs for treating ocular inflammation. [4]\u0000\u0000\u0000The drug-loaded eye drop is easy to use. However, it has the inherent disadvantage that most medication is almost immediately diluted away in the tear film when the eye drops are introduced into the cul-de-sac and quickly exhausted from the precorneal cavity's constant tear flow. This process occurs more intensively in swollen eyes than in normal eyes and lachrymal-nasal drainage. [5,6] To avoid the previously stated side effects and increase the drug's effectiveness, a novel approach of an ocular insert that increases the drug's contact time in the eye should be chosen, thus improving patient compliance by increasing bioavailability and reducing frequent administration. [7]\u0000\u0000\u0000Ophthalmic inserts are skinny discs of polymeric substances that fit into the upper or lower conjunctiva sac. They have compensations over the conventional dosage forms and possess amplified ocular residence, discharge the drugs at a slow and consistent momentum, are capable of delivering precise dosing, lack preservatives, have augmented shelf life, and reduced systemic incorporation. [8]\u0000\u0000\u0000Our research intended to fabricate bromfenac sodium ocular inserts to amplify the contact time and offer a controlled release model that could advance patient compliance, cut dosing frequency, and attain superior curative usefulness.","PeriodicalId":300408,"journal":{"name":"EJPPS EUROPEAN JOURNAL OF PARENTERAL AND PHARMACEUTICAL SCIENCES","volume":"3 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115036671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recovery of Naturally Occurring Human Borne Microbial Contamination from Settle Plates Exposed in a Unidirectional Airflow Workstation for 4 Hours","authors":"T. Eaton, Karen Capper, C. Barnett, J. Bright","doi":"10.37521/ejpps.28101","DOIUrl":"https://doi.org/10.37521/ejpps.28101","url":null,"abstract":"The ability of irradiated 90 mm diameter tryptone soya agar settle plates, exposed for 4 hours in a unidirectional airflow (UDAF) workstation to recover microbial contamination, was investigated. The investigation was completed by direct contamination of numerous plates with naturally occurring microbe-carrying particles (MCPs) dispersed from a person within an enclosed environment. Half of these plates were subsequently exposed in a UDAF workstation for 4 hours and then incubated. The other half, contaminated with a similar number of MCPs, were not exposed in the workstation and provided the controls. Investigation of the reduction of plate weight during exposure was also completed to help understand the influence of plate media water content to any loss of microbial recovery. Following incubation, the numbers of recovered micro-organisms were compared and it was determined that the average number of recovered test plate colonies was reduced by 8.7% compared to the control plates and the exposure of the plates to UDAF for 4 hours reduced the plate weight, associated with loss of the media water, by an average of 12.3%. It was concluded that the ability of the plates to recover micro-organisms, following a 4 hour exposure to UDAF, was not significantly reduced.\u0000\u0000Key words: Microbiological settle plate desiccation, media dehydration, unidirectional airflow (UDAF), 4 hour exposure, microbe-carrying particles (MCPs), environmental monitoring, settle plate sampling.","PeriodicalId":300408,"journal":{"name":"EJPPS EUROPEAN JOURNAL OF PARENTERAL AND PHARMACEUTICAL SCIENCES","volume":"48 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115478069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Validation of Blue Light Imaging Technology for the Detection of Viable Microcolonies","authors":"Johannes Oberdörfer","doi":"10.37521//ejpps.27403","DOIUrl":"https://doi.org/10.37521//ejpps.27403","url":null,"abstract":"The possibilities and simplicity of visual colony counting have made it the mainstay of microbiological analysis for more than a hundred years. A main disadvantage of the method is the long time required to generate visible colonies from microbes in a sample. New technologies and automation have emerged in recent years to challenge this mainstay of microbiological analysis. Among these new technologies, the Growth Direct® System uses digital imaging of cellular autofluorescence to detect and enumerate growing microcolonies many generations before they become visible to the human eye by using blue light to excite microbes to autofluorescence. There may be concerns, however, that viable microcolonies are damaged or killed by the energy they are exposed to during excitation. To show that the amount of energy generated by the Growth Direct® System does not have any negative effect on viable microcolonies, four different test series have been prepared and compared to each other. The novel technology was described, and the testing performed which determined that the enumeration by the Growth Direct® System was accurate and did not affect the viable microcolonies using blue light illumination.\u0000\u0000\u0000Key words: Growth Direct®, colony counter, automation, blue light, validation","PeriodicalId":300408,"journal":{"name":"EJPPS EUROPEAN JOURNAL OF PARENTERAL AND PHARMACEUTICAL SCIENCES","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121787427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Validation of a Sporicidal Bio-Decontamination Process for use in Pharmaceutical Isolators in an NHS Aseptic Manufacturing Unit","authors":"Brian McBride","doi":"10.37521//ejpps.27404","DOIUrl":"https://doi.org/10.37521//ejpps.27404","url":null,"abstract":"The recently published revision of EU GMP Annex 1 Manufacture of Sterile Medicinal Products includes a requirement for pharmaceutical isolators to undergo a bio-decontamination process of the interior which should be automated, validated and controlled within defined cycle parameters and include a sporicidal agent. It is widely accepted that the easiest way to achieve this is by converting Hydrogen Peroxide (H2O2) liquid into a state that will diffuse readily through the closed isolator chamber leading to bio-decontamination of all surfaces which it comes into contact with.\u0000\u0000The technology to do this has been around for years and can be validated to give a high level of assurance of surface bio-decontamination comparable with sterilization when used on surfaces in the isolator critical work zone. This type of activity is routinely used in large-scale sterile manufacturing that takes place in the pharmaceutical industry where the amount of materials and timescales involved make this viable.\u0000\u0000In the NHS, aseptic preparation and manufacture of sterile products is carried out in isolators both for immediate use and for stock in anticipation of demand. Automated bio-decontamination systems are available but their use is much less than in the pharmaceutical industry and reliance is still placed on manual spraying and wiping of surfaces with disinfectant agents such as alcohol and hydrogen peroxide. This brings a degree of variability and is more difficult to validate.\u0000\u0000For sterile manufacturing units holding an MHRA Specials Manufacturing licence the expectation is that proper consideration is given to using an automated bio-decontamination process or there is justification for not doing it. For units preparing products for immediate use there is not the same expectation but as standards are improved, it is reasonable to assume it may become the case in the future. To use this type of process requires it to be integrated into the isolator, meaning either buying a new isolator or retrofitting to an existing one. The relatively high cost of this is a barrier to pharmacy department aseptic units using the technology.\u0000\u0000There is a range of bio-decontamination systems on the market from Devea (www.devea environnement.com)which are claimed to be suitable for use in hospital pharmacy clean room facilities. One model from this range, the Phileas Genius is a simple, stand-alone battery powered unit that generates vapourized hydrogen peroxide of particle size 5-10 µm from 7.4% solution using novel spinning disc technology. This generator can be transferred into and out of any closed isolator work zone through the transfer hatch (as long as the hatch door is wide enough) and can be used to do pre-programmed cycles (called zones) to routinely decontaminate inner surfaces.","PeriodicalId":300408,"journal":{"name":"EJPPS EUROPEAN JOURNAL OF PARENTERAL AND PHARMACEUTICAL SCIENCES","volume":"22 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125350930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. Krause, Matthew Cokely, L. Brennan, Aneta Schimanowitz
{"title":"Use of Conductivity as a Tool for On-site Residue Management and Definition of Smart Cleanroom Regimes","authors":"A. Krause, Matthew Cokely, L. Brennan, Aneta Schimanowitz","doi":"10.37521//ejpps.27301","DOIUrl":"https://doi.org/10.37521//ejpps.27301","url":null,"abstract":"Surface residues that result from the use of cleaning and disinfection products are becoming an increasing focus of regulators in the Cleanroom industry. Driven largely by the update to EU GMP Annex 1 [1] and best practice recommendation from the PDA Journal of Pharmaceutical Science and Technology [2], it is now recognized that residues need to be managed to avoid any risks they could present to safety or product quality. \u0000\u0000\u0000Residue management can be successfully achieved by selection and use of low residue disinfectants, through the frequency and choice of rinsing agent for removal, the use of the most suitable tools for physical removal like cleanroom specific mops, or a combination of all these factors. \u0000\u0000\u0000Unlike product contact surfaces [3], there is no clear guidance as to what level of residue may be acceptable on small or large cleanroom surfaces, or how they can be quantified. For this reason, most people still rely on judging a surface to be ‘visibly clean’. \u0000\u0000\u0000To improve detection and to quantify the level of residue on a cleanroom surface, a pragmatic method has been developed to measure residue anywhere on-site: Quantification of disinfectant residues by the use of conductivity.\u0000\u0000\u0000The method of quantification of disinfectant residues using conductivity has been verified in studies by measuring the residues derived from different disinfectant types, at various scales (from bench scale upwards) and various locations, and from laboratory to representative pharmaceutical manufacturing areas. Compared to the current ‘gold standard’ that has long been used for the assessment of residues – an individual’s judgment of ‘visually clean’ - the data from conductivity measurements can eliminate this subjective human appraisal and replace it with scientific assessment.\u0000\u0000\u0000Comparison of the visual analysis rating versus conductivity data also revealed that the human eye does indeed underestimate the actual levels of disinfectant residues remaining on surfaces in a cleanroom, resulting in potential impacts of risk to safety, contamination, time, and cost.","PeriodicalId":300408,"journal":{"name":"EJPPS EUROPEAN JOURNAL OF PARENTERAL AND PHARMACEUTICAL SCIENCES","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130107912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EU GGMP Annex 1 2022 and Pharmaceutical Cleanroom Classification - Consideration of the changes from EU GGMP Annex 1 2008","authors":"T. Eaton, N. Lenegan","doi":"10.37521//ejpps.27402","DOIUrl":"https://doi.org/10.37521//ejpps.27402","url":null,"abstract":"Classification is an essential part of the qualification activities for pharmaceutical cleanrooms to confirm the effectiveness of the airborne contamination control system. A review of the classification requirements and principles associated with ISO 14644-1:2015 and Annex 1 2008 of the European Union Guide to Good Manufacturing Practice (GGMP) has previously been reported. As this version has now been superseded by the 2022 edition, review of the relevant updates has been completed to assess the impact of the classification process for a cleanroom used for aseptic processing. With some additions and text updates, many of the requirements and expectations for classification can be considered to remain effectively unchanged from the 2008 version. However, there are items of more significant change for consideration and this article summarises those elements that have minimal impact and focuses upon the significant changes and provides recommendations, and options, to ensure continued meaningful classification.\u0000\u0000 \u0000\u0000Key words: Cleanroom classification, ISO 14644-1, EU GGMP Annex 1 2022","PeriodicalId":300408,"journal":{"name":"EJPPS EUROPEAN JOURNAL OF PARENTERAL AND PHARMACEUTICAL SCIENCES","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"117063307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}