{"title":"Non-Contact Vital Sign Detection With High Noise and Clutter Immunity Based on Coherent Low-IF CW Radar","authors":"Jingtao Liu;Fei Tong;Changzhan Gu","doi":"10.1109/JERM.2024.3454332","DOIUrl":"https://doi.org/10.1109/JERM.2024.3454332","url":null,"abstract":"Non-contact vital sign detection using Continuous-Wave (CW) radar is subject to noises and clutters. The heterodyne architecture of the radar transceiver resolves the flicker noise. However, it still suffers from other noise components. Moreover, the presence of clutter also significantly introduces distortions in the sensing results. In this paper, an extended Noise-Immune Motion Sensing (ENIMS) technique is proposed to tackle the noise and clutters simultaneously in the low intermediate-frequency (IF) CW radar. It works by synthesizing <italic>I/Q</i> signals at the IF peak of the spectra of the sequentially divided signal segments. Each segment generates one pair of <italic>I/Q</i> data points and thus improves the signal-to-noise ratio (<italic>SNR</i>). During this process, clutters are also converted into DC components of the <italic>I/Q</i> signals. The circle-fitting-based DC compensation technique can thus be used to resolve the clutter issues. High-accurate displacement motion is then reconstructed with the DC-compensated <italic>I/Q</i> signals. The theory and noise performance analysis are presented. Simulation and experiments show that, with the proposed technique, the <italic>SNR</i> is improved by around 34 dB. Mechanical vibration as small as 90 <italic>μ</i>m and the subject person's breath and heartbeat at 3.2 m away from the 5. 8 GHz radar were detected under cluttered office environments with a small transmitting power of only 10 <italic>μ</i>W, whereas the conventional methods fail in the same cases.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"90-100"},"PeriodicalIF":3.0,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daisuke Nishihara;Kensuke Sasaki;Rasyidah Hanan Binti Mohd Baharin;Tomoaki Nagaoka;Osamu Hashimoto;Ryosuke Suga
{"title":"Development of Measurement Phantom for Absorbed Power Density Assessment by Human Exposure at 28 GHz Band","authors":"Daisuke Nishihara;Kensuke Sasaki;Rasyidah Hanan Binti Mohd Baharin;Tomoaki Nagaoka;Osamu Hashimoto;Ryosuke Suga","doi":"10.1109/JERM.2024.3419026","DOIUrl":"https://doi.org/10.1109/JERM.2024.3419026","url":null,"abstract":"In recent years, the guidelines/standards of human exposures to electromagnetic fields have been revised and a new metric referred to as absorbed/epithelial power density (APD) is specified as the basic restriction in the frequency range from 6 to 300 GHz. In this paper, we focus on the development of low-loss phantoms that can model the electromagnetic interaction between an antenna/device and skin in the quasi-millimeter and millimeter-wave frequencies using electromagnetic simulation. The phantom will be used for APD assessment based on field measurement at 28 GHz. It was found that polyphenylene-ether (PPE), which is typically used for antenna substrates, enables the accurate assessment of APD on the skin surface regardless of the antenna type, and that it is rendered suitable as a phantom for APD assessment by optimizing the thickness of low-loss materials with respect to relative permittivity in the range from 10 to 28.5 at 28 GHz.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 2","pages":"191-197"},"PeriodicalIF":3.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhanced Physics Modelling in Radar-Based Microwave Imaging for Breast Cancer Detection","authors":"Tyson Reimer;Spencer Christie;Illia Prykhodko;Stephen Pistorius","doi":"10.1109/JERM.2024.3453994","DOIUrl":"https://doi.org/10.1109/JERM.2024.3453994","url":null,"abstract":"Microwave-based breast imaging (MBI) is an emerging modality that may serve as a screening tool due to the relatively large dielectric contrast between malignant and healthy tissues, the relatively low cost and small size of microwave hardware, and the favourable safety profile of non-ionizing microwave imaging. After more than two decades of research into MBI and several published clinical trials, challenges remain before the modality can be used clinically. Existing estimates of the diagnostic specificity are relatively low, between 20–65%. As a result of the limited specificity of the technique, existing radar-based image reconstruction algorithms have not demonstrated sufficient accuracy for breast cancer diagnosis. This article proposes using enhanced physics modelling (EPM) to improve the accuracy of the physics models used in image reconstruction to address the limited diagnostic accuracy. The results obtained in this study indicated that using EPM significantly improved the area under the curve (AUC) of the receiver operating characteristic curve. The AUC was improved from (84 <inline-formula><tex-math>$pm$</tex-math></inline-formula> 1)% to (92 <inline-formula><tex-math>$pm$</tex-math></inline-formula> 1)% through the use of EPM, demonstrating the potential of physics-informed radar-based image reconstruction in MBI.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 2","pages":"183-190"},"PeriodicalIF":3.0,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117268","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Programmable Pulse Generator by Envelope Detection for Implantable Medical Devices","authors":"Hao Zhang;Xiaozhou Zhou;Wenlong Zhou","doi":"10.1109/JERM.2024.3435075","DOIUrl":"https://doi.org/10.1109/JERM.2024.3435075","url":null,"abstract":"Pulse generators in implantable medical devices need to be programmable and miniaturized. However, the existing designs of pulse generator cannot satisfy both of the requirements at the same time. This paper presents a novel design of pulse generators applying magnetic resonance, which is composed of a class-C inverter and an envelope detector, for implantable medical devices. Through simulation and tests, we verify the superiority of our design in programmability of the output pulse signal and miniaturization of the implants, compared with the conventional designs. The amplitude, frequency and duty cycle of the output pulse signal of the implanted receiver can be modulated by controlling the input signal of the transmitter outside the human body. And the footprint of the implanted receiver can be miniaturized to 12 mm × 14 mm × 5 mm, which is smaller than half the size of most of the existing products.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"80-89"},"PeriodicalIF":3.0,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pouya Mehrjouseresht;Oluwatosin J. Babarinde;Vladimir Volski;Alexander Ye. Svezhentsev;Dominique M. M.-P. Schreurs
{"title":"Safeguarding Humans From Indoor Wireless Powering via Radar Detection","authors":"Pouya Mehrjouseresht;Oluwatosin J. Babarinde;Vladimir Volski;Alexander Ye. Svezhentsev;Dominique M. M.-P. Schreurs","doi":"10.1109/JERM.2024.3447469","DOIUrl":"https://doi.org/10.1109/JERM.2024.3447469","url":null,"abstract":"Ensuring the safety of electromagnetic exposure stands as an important concern in wireless power transfer (WPT) systems. This work proposes a distributed Fusion Radar WPT (FRWPT) system designed to maintain safe Electric Field Amplitude (EFA) levels at specific locations detected by the radar, primarily where an individual is present. This approach allows for higher EFA in areas without the person, thus optimizing overall power utilization within the system. Also, the radar's ability to detect a person's velocity allows for projecting the person's upcoming location to ensure safety in advance. We introduce an algorithm including power weighting factors for controlling power to not only mitigate dangerous radiation but also maximize power utilization. One significant challenge is the estimation of EFA considering multipath propagation, a common issue in indoor environments. To overcome this, we explore the indoor EFA distribution and suggest a simulation-based method for EFA estimation, taking into account the amplifying effect of the human body on EFA. Experimental results demonstrate that the system successfully maintains EFA below a predefined threshold across various human locations. Moreover, these experiments highlight the system's capability to maximize power utilization ratio (PUR), achieving a value exceeding 50%.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"62-69"},"PeriodicalIF":3.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Propagation of Radio-Frequency Electromagnetic Fields Emitted by Surface-Mounted Parallel-Plate Couplers Along Human Limbs","authors":"Arno Thielens","doi":"10.1109/JERM.2024.3442693","DOIUrl":"https://doi.org/10.1109/JERM.2024.3442693","url":null,"abstract":"Wearables on human limbs commonly require wireless connections with other body-worn devices. These links can be established using radio-frequency electromagnetic fields emitted by parallel-plate capacitors (PPCs) as transducing elements. The propagation of the electric (E-) fields emitted by such PPCs on the surface of human limbs is studied by simulations with a stratified, lossy, dielectric cylinder as a limb model. In contrast to currently existing models, this analysis demonstrates that this propagation depends strongly on propagating modes within the lossy dielectric waveguide and that this is associated with an optimal frequency band of operation for such wireless links, which is tied to cut-off frequencies for propagation along the cylindrical waveguide and the radiation efficiency of the PPC, which is also dependent on the limb size. A channel-loss model in the 0.1–1 GHz frequency range is determined based on the simulations. This model is validated using channel loss measurements using a PPC placed on the limbs of three human subjects.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"70-79"},"PeriodicalIF":3.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chandler Bauder;Abdel-Kareem Moadi;Vijaysrinivas Rajagopal;Tianhao Wu;Jian Liu;Aly E. Fathy
{"title":"mm-MuRe: mmWave-Based Multi-Subject Respiration Monitoring via End-to-End Deep Learning","authors":"Chandler Bauder;Abdel-Kareem Moadi;Vijaysrinivas Rajagopal;Tianhao Wu;Jian Liu;Aly E. Fathy","doi":"10.1109/JERM.2024.3443782","DOIUrl":"https://doi.org/10.1109/JERM.2024.3443782","url":null,"abstract":"This study presents <sc>mm-MuRe</small>, a novel method to perform multi-subject contactless respiration waveform monitoring by processing raw multiple-input-multiple-output mmWave radar data with an end-to-end deep neural network. The traditional vital signs monitoring signal processing scheme for mmWave radar involves analog or digital beamforming, human subject localization, phase variation extraction, filtering, and rate or biomarker analysis. This traditional method has many downsides, including sensitivity to selected beamforming weights and over-reliance on phase variation. To avoid these drawbacks, <sc>mm-MuRe</small> (for MM-wave based MUlti-subject REspiration monitoring) is developed to improve reconstruction accuracy and reliability by taking in unprocessed 60 GHz MIMO FMCW radar data and outputting respiratory waveforms of interest, effectively mimicking an adaptive beamformer and bypassing the need for traditional localization and vital signs extraction techniques. Extensive testing across scenarios differing in range, angle, environment, and subject count demonstrates the network's robust performance, with an average cosine similarity exceeding 0.95. Results are compared to two baseline methods and show more than a 10% average improvement in waveform reconstruction accuracy across single and multi-subject scenarios. Coupled with a rapid inference time of 8.57 ms on a 10 s window of data, <sc>mm-MuRe</small> shows promise for potential deployment to efficient and accurate near-real-time contactless respiration monitoring systems.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"49-61"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal","authors":"","doi":"10.1109/JERM.2024.3442073","DOIUrl":"https://doi.org/10.1109/JERM.2024.3442073","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"C3-C3"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643730","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information","authors":"","doi":"10.1109/JERM.2024.3442071","DOIUrl":"https://doi.org/10.1109/JERM.2024.3442071","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"C2-C2"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643733","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Computation of Effective Dielectric Properties Using Dielectric Mixing Model Approach for Breast Cancer Detection","authors":"Rakesh Singh;Dharmendra Singh;Manoj Gupta","doi":"10.1109/JERM.2024.3433008","DOIUrl":"https://doi.org/10.1109/JERM.2024.3433008","url":null,"abstract":"Breast cancer imaging technology requires the artificial breast phantom for early-stage breast cancer testing. The creation of a breast phantom that can replicate the dielectric properties found in real breast tissue holds significant importance in the optimization of the imaging system where computation of the effective dielectric properties of the breast, with and without the tumor needs more attention. Therefore, in this paper, an attempt has been made to develop the dielectric mixing model approach which may represent the real scenario of breast cancer like breast with different size of the tumor. This paper is also proposed to fabricate the phantom using gelatin and water and different size of tumor such as 2 mm, 4 mm, 6 mm, 8 mm and 10 mm which has been inserted in the phantom, and obtained result were compared with dielectric mixing model approach. The dielectric properties of a fabricated phantom, and phantom embedded with different sizes of tumor, were obtained using an open-ended coaxial probe method and computed the effective dielectric properties using dielectric mixing model approach spanning the frequency range from 1 GHz to 10 GHz. It is observed that the measurement results are in quite good agreement with the result of the dielectric mixing model. The main aim of the paper is to observe the change in dielectric properties when the tumor sizes are changing and it is found that there are considerable changes in dielectric with different dimension of the tumor in the frequency range 1 GHz to 10 GHz.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"42-48"},"PeriodicalIF":3.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}