IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology最新文献

筛选
英文 中文
IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology 关于本期刊
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-08-22 DOI: 10.1109/JERM.2024.3442073
{"title":"IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal","authors":"","doi":"10.1109/JERM.2024.3442073","DOIUrl":"https://doi.org/10.1109/JERM.2024.3442073","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"C3-C3"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643730","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology 出版信息
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-08-22 DOI: 10.1109/JERM.2024.3442071
{"title":"IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information","authors":"","doi":"10.1109/JERM.2024.3442071","DOIUrl":"https://doi.org/10.1109/JERM.2024.3442071","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"C2-C2"},"PeriodicalIF":3.0,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10643733","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computation of Effective Dielectric Properties Using Dielectric Mixing Model Approach for Breast Cancer Detection
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-08-19 DOI: 10.1109/JERM.2024.3433008
Rakesh Singh;Dharmendra Singh;Manoj Gupta
{"title":"Computation of Effective Dielectric Properties Using Dielectric Mixing Model Approach for Breast Cancer Detection","authors":"Rakesh Singh;Dharmendra Singh;Manoj Gupta","doi":"10.1109/JERM.2024.3433008","DOIUrl":"https://doi.org/10.1109/JERM.2024.3433008","url":null,"abstract":"Breast cancer imaging technology requires the artificial breast phantom for early-stage breast cancer testing. The creation of a breast phantom that can replicate the dielectric properties found in real breast tissue holds significant importance in the optimization of the imaging system where computation of the effective dielectric properties of the breast, with and without the tumor needs more attention. Therefore, in this paper, an attempt has been made to develop the dielectric mixing model approach which may represent the real scenario of breast cancer like breast with different size of the tumor. This paper is also proposed to fabricate the phantom using gelatin and water and different size of tumor such as 2 mm, 4 mm, 6 mm, 8 mm and 10 mm which has been inserted in the phantom, and obtained result were compared with dielectric mixing model approach. The dielectric properties of a fabricated phantom, and phantom embedded with different sizes of tumor, were obtained using an open-ended coaxial probe method and computed the effective dielectric properties using dielectric mixing model approach spanning the frequency range from 1 GHz to 10 GHz. It is observed that the measurement results are in quite good agreement with the result of the dielectric mixing model. The main aim of the paper is to observe the change in dielectric properties when the tumor sizes are changing and it is found that there are considerable changes in dielectric with different dimension of the tumor in the frequency range 1 GHz to 10 GHz.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"42-48"},"PeriodicalIF":3.0,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of Multi-Layer Tissue-Mimicking Dielectric Stacks From 2 to 20 GHz
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-08-01 DOI: 10.1109/JERM.2024.3434519
Robert Streeter;Jooeun Lee;Gabriel Santamaria Botello;Zorana Popović
{"title":"Classification of Multi-Layer Tissue-Mimicking Dielectric Stacks From 2 to 20 GHz","authors":"Robert Streeter;Jooeun Lee;Gabriel Santamaria Botello;Zorana Popović","doi":"10.1109/JERM.2024.3434519","DOIUrl":"https://doi.org/10.1109/JERM.2024.3434519","url":null,"abstract":"Determination of the thickness, permittivity, and conductivity of tissue layers in the microwave region of the electromagnetic spectrum is relevant to a number of applications, such as breast-cancer imaging and non-invasive subcutaneous tissue thermometry. Many current characterization approaches are limited to one or two layers, often required to be aqueous. This paper presents simplified modeling of a stack of tissue layers as a series of complex impedance transmission lines in the 2–20 GHz decade. A near-field, broadband interrogation antenna designed for this frequency range and placed on the skin is validated with complex reflection coefficient measurements on seventeen different stacks of materials. Initial measurements are used to build a lookup table of features that are then used to classify three independent sets of follow-up measurements on the same stacks. After processing and consideration of very thin and very low loss materials, the error rates for classification are found to be between 5.9% and 14.7%. This confirms that features extracted from a simple, calibrated one-port broadband reflection coefficient measurement provide sufficient information to identify the composition of a layered stack, modeling tissue layers.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"36-41"},"PeriodicalIF":3.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Models of Melanoma Growth for Assessment of Microwave-Based Diagnostic Tools 用于评估微波诊断工具的黑色素瘤生长模型
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-07-29 DOI: 10.1109/JERM.2024.3430315
Jasmine Boparai;Rachel Tchinov;Oliver Miller;Yanis Jallouli;Milica Popović
{"title":"Models of Melanoma Growth for Assessment of Microwave-Based Diagnostic Tools","authors":"Jasmine Boparai;Rachel Tchinov;Oliver Miller;Yanis Jallouli;Milica Popović","doi":"10.1109/JERM.2024.3430315","DOIUrl":"https://doi.org/10.1109/JERM.2024.3430315","url":null,"abstract":"Malignant melanoma, the aggressive form of skin cancer, progresses via radial and vertical growth. The aim of this study is to assess the feasibility of microwave-based diagnosis of melanoma at different stages of tumor progression. To this end, we used the physiological data for melanoma progression to develop a theoretical model of melanoma growth, followed by the oil-in-gelatin based tissue phantoms, which aim to mimic the dielectric behavior of the tissues under consideration. The phantoms are then dielectrically characterized using a slim-form open-ended coaxial probe by systematically sampling dielectric values across the mimicked skin surfaces at a range of points over the 0.5 – 26.5 GHz frequency range. The resulting observations revealed that the microwave spectroscopy exhibits the capability not only to distinguish between healthy and malignant skin, but also differentiate between tumors at different stages of vertical growth, which may not be visually discernible from the skin surface. The measured results are compared with the estimated dielectric values of malignant melanoma using Lichteneker's mixing equation obtained from the literature and it was observed that the measured results closely agree with the literature values.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"305-315"},"PeriodicalIF":3.0,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Heart Rate Variability in Challenging Low SNR Regimes Using Wearable Magnetocardiography Sensors
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-07-17 DOI: 10.1109/JERM.2024.3426270
Ali Kaiss;Md. Asiful Islam;Asimina Kiourti
{"title":"Estimating Heart Rate Variability in Challenging Low SNR Regimes Using Wearable Magnetocardiography Sensors","authors":"Ali Kaiss;Md. Asiful Islam;Asimina Kiourti","doi":"10.1109/JERM.2024.3426270","DOIUrl":"https://doi.org/10.1109/JERM.2024.3426270","url":null,"abstract":"We report <sc>Beat Estimation</small>, a novel method used to calculate Heart Rate Variability (HRV) from low Signal to Noise Ratio (SNR) data (−7 dB to −4 dB in this work) acquired via wearable magnetocardiography (MCG). MCG activity is first collected using an in-house wearable sensor and filtered to remove noise outside the band of interest. <sc>Beat Estimation</small> extracts a single heart beat from the filtered recording and correlates it with a small number of beats individually to average out the remaining noise. The de-noised beat is then correlated with the full recording to identify the location of each of the heart beats. Using these locations, HRV parameters are, finally, calculated. Results show <inline-formula><tex-math>$sim$</tex-math></inline-formula>99.9% accuracy in estimating HRV metrics using beat-to-beat intervals as opposed to traditional R-to-R-peak intervals. The average accuracy of detecting the true location of beats is shown to increase to 96.43% using <sc>Beat Estimation</small> as opposed to 59.98% using our previous method that relied on R-peak detection. In summary, <sc>Beat Estimation</small> renders wearable MCG sensors capable of accurately estimating HRV, despite the low SNR levels associated with sensor operation. The approach can be game-changing in assessing heart health, cardiovascular fitness, stress levels, cognitive workload, and more.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"27-35"},"PeriodicalIF":3.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combined Magnetoelectric/Coil Receiving Antenna for Biomedical Wireless Power Transfer
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-07-08 DOI: 10.1109/JERM.2024.3420737
Yuchen Ma;Changrong Liu;Yong Huang;Hua Ke;Xueguan Liu
{"title":"Combined Magnetoelectric/Coil Receiving Antenna for Biomedical Wireless Power Transfer","authors":"Yuchen Ma;Changrong Liu;Yong Huang;Hua Ke;Xueguan Liu","doi":"10.1109/JERM.2024.3420737","DOIUrl":"https://doi.org/10.1109/JERM.2024.3420737","url":null,"abstract":"To improve the wireless power transfer efficiency (PTE) of implantable medical devices (IMDs), a receiving rectenna consisting of a magneto-electric (ME) heterostructure mechanical antenna combined with an RF inductive coil is proposed in this paper. The receiving antenna, which operates at 54 kHz, consists of a ME antenna of 30 × 10 × 0.456 mm<sup>3</sup> and a 60-turn inductive coil wound of 30 × 12 × 3 mm<sup>3</sup>. The receiving and transmitting antennas are analyzed and the wireless power transfer performance is measured. The specific absorption rate (SAR) at the resonant frequency is simulated to satisfy the safety standard. The final measured PTE at a distance of 15 mm between the transmitting coil and the proposed receiving antenna is 2.8159%, which is considerably higher than that of a single ME antenna or an inductive coil. The proposed receiving antenna is suitable for wireless biomedical devices.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"15-26"},"PeriodicalIF":3.0,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Fast Method to Estimate the SAR Distribution From Temperature Increased Maps 从温度增加图估算合成孔径雷达分布的快速方法
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-07-02 DOI: 10.1109/JERM.2024.3418716
Giuseppe Carluccio;Sukhoon Oh;Sangwoo Kim;Donghyuk Kim;Karthik Lakshmanan;Christopher M. Collins
{"title":"A Fast Method to Estimate the SAR Distribution From Temperature Increased Maps","authors":"Giuseppe Carluccio;Sukhoon Oh;Sangwoo Kim;Donghyuk Kim;Karthik Lakshmanan;Christopher M. Collins","doi":"10.1109/JERM.2024.3418716","DOIUrl":"https://doi.org/10.1109/JERM.2024.3418716","url":null,"abstract":"<bold>Objectives:</b>\u0000 Estimation of Specific energy Absorption Rate (SAR) is critical to assess RF safety for devices that rely on the transmission of electromagnetic energy, such as cellphones or MRI coils. SAR generates local heat which can damage human tissues and it is usually estimated through numerical simulations. We describe a method to estimate the SAR distribution in phantoms that is fast and not computationally demanding, based on the evaluation of temperature increase maps. \u0000<bold>Technology or Method:</b>\u0000 The presented method relies on the inversion of a previously published method to quickly estimate the temperature increase with the knowledge of the SAR distribution and thermal properties. By reversing the process, we can estimate the SAR from temperature increase maps and material thermal properties. To demonstrate the method, we utilize temperature maps measured with MRI-based thermography and compare the estimated SAR maps with those obtained through electromagnetic simulations. We have performed these comparisons with two datasets, one 2D and one 3D, and we have considered the impact of potential sources of errors such as the acquisition time and discontinuities at the interface air/sample. \u0000<bold>Results:</b>\u0000 The method can estimate SAR distribution from experimental temperature increase maps within few seconds, and produces SAR distributions similar to those from simulation of the experimental situation. \u0000<bold>Clinical or Biological Impact</b>\u0000: The method we present can quickly estimate SAR distribution to assess RF safety of radiofrequency devices.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"298-304"},"PeriodicalIF":3.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards Non-Invasive Liver Health Monitoring: Comprehensive Microwave Dielectric Spectroscopy of Freshly Excised Human Abdominal Tissues
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-06-26 DOI: 10.1109/JERM.2024.3416758
Md. Abdul Awal;Azin S. Janani;Sasan Ahdi Rezaeieh;Graeme A. Macdonald;Amin Abbosh
{"title":"Towards Non-Invasive Liver Health Monitoring: Comprehensive Microwave Dielectric Spectroscopy of Freshly Excised Human Abdominal Tissues","authors":"Md. Abdul Awal;Azin S. Janani;Sasan Ahdi Rezaeieh;Graeme A. Macdonald;Amin Abbosh","doi":"10.1109/JERM.2024.3416758","DOIUrl":"https://doi.org/10.1109/JERM.2024.3416758","url":null,"abstract":"Metabolic dysfunction-associated steatotic liver disease ranks among the most prevalent chronic liver conditions worldwide. To reduce its burden, early diagnosis is vital to enable timely medication and rehabilitation. The non-invasive diagnosis of liver health is challenging due to the limitations of existing methods. For this purpose, the design of portable non-invasive electromagnetic sensors requires knowledge of how human liver tissue and other abdominal tissues interact with electromagnetic waves. This necessitates the accurate characterisation of dielectric properties of the liver and adjacent abdominal tissues. Since postmortem changes or prolonged storage significantly change those properties and lead to incorrect interpretation, fresh human abdominal tissues, including skin, fat, muscle, and liver, were obtained at surgery, and their dielectric properties were measured immediately in the microwave frequency range of 0.5 GHz to 15 GHz. An adaptive weighted vector mean optimization algorithm was used to derive the parameters of a second-order Cole-Cole model using the experimental data. Statistical and cluster analyses were performed on the curated database following the derived model. The results showed that hepatic steatosis significantly changed the dielectric properties of the liver <inline-formula><tex-math>$(p &lt; 0.001)$</tex-math></inline-formula>. Moreover, the liver had distinct dielectric properties from the skin, fat, and muscle tissues <inline-formula><tex-math>$(p &lt; 0.05)$</tex-math></inline-formula>. These findings suggest that electromagnetic sensors could be used to assess liver health in a non-invasive way, which could improve liver health outcomes and reduce costs.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"2-14"},"PeriodicalIF":3.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455302","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field-Based Discretization of the 3-D Contrast Source Inversion Method Applied to Brain Stroke Microwave Imaging 基于场的三维对比源反演法离散化应用于脑卒中微波成像
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-06-21 DOI: 10.1109/JERM.2024.3414196
Valeria Mariano;Jorge A. Tobon Vasquez;David O. Rodriguez-Duarte;Francesca Vipiana
{"title":"Field-Based Discretization of the 3-D Contrast Source Inversion Method Applied to Brain Stroke Microwave Imaging","authors":"Valeria Mariano;Jorge A. Tobon Vasquez;David O. Rodriguez-Duarte;Francesca Vipiana","doi":"10.1109/JERM.2024.3414196","DOIUrl":"https://doi.org/10.1109/JERM.2024.3414196","url":null,"abstract":"The contrast source inversion method is an iterative non-linear algorithm, and, in this paper, it works in combination with a finite element method solver for the reconstruction of the dielectric properties' distribution in the head with the aim to diagnose brain stroke. Here, the involved contrast source variables are discretized through a novel field-based discretization that allows a linear variation of the variables, leading to their more accurate description, and therefore to a final dielectric properties' reconstruction closer to the expected scenario. Moreover, we propose a new approach to compute the imaging algorithm initial guess, based on the truncated singular value decomposition technique, that appears more effective in the case of noisy measured data. Finally, the developed algorithm is applied to sets of data, measured with a microwave imaging system to reconstruct brain stroke scenarios.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"8 3","pages":"290-297"},"PeriodicalIF":3.0,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142084501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信