IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology最新文献

筛选
英文 中文
Extending the MaRCoS: A 4-Rx Open-Source MRI Console for Low-, Mid-, and High-Field Systems 扩展MaRCoS:用于低场、中场和高场系统的4-Rx开源MRI控制台
IF 3.2
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2025-02-24 DOI: 10.1109/JERM.2025.3530968
Hanlei Wang;Feiyang Lou;Yiman Huang;Yang Gao;Xiaotong Zhang
{"title":"Extending the MaRCoS: A 4-Rx Open-Source MRI Console for Low-, Mid-, and High-Field Systems","authors":"Hanlei Wang;Feiyang Lou;Yiman Huang;Yang Gao;Xiaotong Zhang","doi":"10.1109/JERM.2025.3530968","DOIUrl":"https://doi.org/10.1109/JERM.2025.3530968","url":null,"abstract":"The fast advancement of low-field MRI (magnetic resonance imaging) has generated a high demand for cost-effective and versatile consoles for MRI scanners. MaRCoS (MAgnetic Resonance COntrol System) is such an open-source system that has been well-tested on various low-field systems. However, due to limitations of the basic hardware, MaRCoS is constrained in its ability to support a wide range of field strengths and RF (radio-frequency) channels. In this study, we aim to port the MaRCoS console to high-field (up to 125 MHz Larmor frequency) MRI systems and increase the number of RF receive channels, enabling phased-array coils and/or active EMI (electromagnetic interference) elimination techniques. A series of implementations were conducted across 0.11-, 0.5-, and 1.5-Tesla MRI systems, to evaluate its compatibility and performance. Promising results indicate that the extended console not only matches but, to some extent, surpasses the performance of a commercial console, particularly in terms of flexibility and accessibility. It is hoped that this study could effectively expand the scope of open-source MRI technology, making MRI scans more accessible and affordable.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 3","pages":"351-359"},"PeriodicalIF":3.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible Implementation of Open-Ended Coaxial Probes for Dielectric Characterization of Biological Tissues 用于生物组织介质表征的开放式同轴探针的灵活实现
IF 3.2
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2025-02-24 DOI: 10.1109/JERM.2025.3539549
Ali Farshkaran;Emily Porter
{"title":"Flexible Implementation of Open-Ended Coaxial Probes for Dielectric Characterization of Biological Tissues","authors":"Ali Farshkaran;Emily Porter","doi":"10.1109/JERM.2025.3539549","DOIUrl":"https://doi.org/10.1109/JERM.2025.3539549","url":null,"abstract":"Open-ended coaxial probes are commonly used for characterizing the dielectric properties of biological tissues across the microwave frequency range. They uniquely enable broadband, non-destructive measurements, and can be used in-vivo. These dielectric probes are typically long, straight, rigid instruments. For some clinical in-vivo applications use of the probes in curved positions may be convenient to facilitate access to difficult to reach areas. In this work, we study the potential for performing measurements with probes flexed to different radii of curvature, and assess the accuracy in the resulting complex permittivity. We perform both electromagnetic simulations and experimental measurements, with a variety of curvatures and different tissue test materials. The results indicate that accurate dielectric properties can be achieved even when open-ended coaxial probes are curved to a high degree.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 3","pages":"344-350"},"PeriodicalIF":3.2,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal 医学和生物学中的电磁学、射频和微波
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2025-02-20 DOI: 10.1109/JERM.2025.3539041
{"title":"IEEE Journal of Electromagnetics, RF, and Microwaves in Medicine and Biology About this Journal","authors":"","doi":"10.1109/JERM.2025.3539041","DOIUrl":"https://doi.org/10.1109/JERM.2025.3539041","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"C3-C3"},"PeriodicalIF":3.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10896912","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information 医学和生物学中的电磁学、射频和微波杂志
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2025-02-20 DOI: 10.1109/JERM.2025.3539043
{"title":"IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology Publication Information","authors":"","doi":"10.1109/JERM.2025.3539043","DOIUrl":"https://doi.org/10.1109/JERM.2025.3539043","url":null,"abstract":"","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 1","pages":"C2-C2"},"PeriodicalIF":3.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10896909","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143455314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantifying Consistency of Microwave Breast Imaging: Laser Scanning for Assessing Breast Volume and Shape 微波乳房成像的一致性量化:激光扫描评估乳房体积和形状
IF 3.2
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2025-02-06 DOI: 10.1109/JERM.2025.3531693
Carina M. Butterworth;Pedram Mojabi;Elise C. Fear
{"title":"Quantifying Consistency of Microwave Breast Imaging: Laser Scanning for Assessing Breast Volume and Shape","authors":"Carina M. Butterworth;Pedram Mojabi;Elise C. Fear","doi":"10.1109/JERM.2025.3531693","DOIUrl":"https://doi.org/10.1109/JERM.2025.3531693","url":null,"abstract":"Microwave breast imaging is a promising approach that requires additional information such as the position, shape, and volume of the breast in the system for rigorous validation. The objectives of this proof-of-concept study were to develop a workflow to calculate the shape and volume of a breast positioned in contact with two imaging plates and to apply this workflow to assess the consistency of breast placement at sequential scans. The use of externally placed laser scanners facilitates capturing the shape and volume of the breast when positioned in the microwave system. A workflow was developed to estimate regions lacking observable measurements from the laser scanners, specifically implementing meshing, filtering, and surface estimation. The consistency of the breast shape and volume at sequential scans was quantified with the Dice coefficient, modified Hausdorff distance (MHD), and Fréchet distance. The study achieved an average Dice coefficient of 0.74 and MHD better than 10 mm, with the average below 4 mm. The Fréchet distances were higher than the MHD but demonstrated consistency with the phantom. Overall, this work demonstrates consistent placement of the breast at sequential scans and provides a framework for further investigation into the microwave signals and images.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 3","pages":"335-343"},"PeriodicalIF":3.2,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A GaAs MMIC Correlation-Dicke Radiometer With Compact Antenna for Internal Body Thermometry 一种具有紧凑天线的GaAs MMIC相关dick辐射计用于体内温度测量
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2025-01-27 DOI: 10.1109/JERM.2024.3525405
Jooeun Lee;Zoya Popović
{"title":"A GaAs MMIC Correlation-Dicke Radiometer With Compact Antenna for Internal Body Thermometry","authors":"Jooeun Lee;Zoya Popović","doi":"10.1109/JERM.2024.3525405","DOIUrl":"https://doi.org/10.1109/JERM.2024.3525405","url":null,"abstract":"In this paper, we present a 1.4 GHz on-chip correlation-Dicke hybrid radiometer designed for internal body thermometry. The GaAs Monolithic Microwave Integrated Circuit (MMIC) measures 3.8 mm by 2.3 mm and includes two 90° hybrid couplers, a single-stage Low-Noise Amplifier (LNA) in each path, and a switch. The radiometer input is connected to a planar compact near-field circular slot-patch antenna placed on the skin and designed to receive noise power from subcutaneous tissues. To enhance robustness against input impedance mismatch, two single-stage LNAs are positioned between the two hybrid couplers. The circuit demonstrates a gain of 13.4 dB, isolation of 16 dB, and a noise figure of 1.31 dB. Following the switch, an off-the-shelf band-pass filter, an on-chip 3-stage LNA, and a detector are connected to provide a dc output proportional to the received thermal noise from the near-field antenna. Performance is evaluated through both phantom and in-vivo measurements. The 2-layer phantom measurement shows an average error of 0.35 °C, while in-vivo measurements show an average 0.72 °C error, demonstrating the device's ability to track internal temperature accurately. Additionally, repeatability tests are conducted on multiple human cheeks multiple times and on multiple days.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 2","pages":"103-109"},"PeriodicalIF":3.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Broadband Wide-Angle Absorber for Microwave Imaging of Tissue 用于组织微波成像的宽带广角吸收器
IF 3
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2025-01-27 DOI: 10.1109/JERM.2025.3529656
Zhen-Yuan Zhang;Golap K. Dey;Nooshin V. Shahmirzadi;Natalia K. Nikolova
{"title":"Broadband Wide-Angle Absorber for Microwave Imaging of Tissue","authors":"Zhen-Yuan Zhang;Golap K. Dey;Nooshin V. Shahmirzadi;Natalia K. Nikolova","doi":"10.1109/JERM.2025.3529656","DOIUrl":"https://doi.org/10.1109/JERM.2025.3529656","url":null,"abstract":"A broadband wide-angle absorbing structure for the non-reflective termination of tissue is proposed for enclosures needed in microwave tissue imaging. A prototype consisting of 10 × 10 unit cells is fabricated and experimentally tested using breast-tissue phantoms. Through simulations and measurements, it is demonstrated that the proposed absorbing structure achieves a reflection coefficient better than −20 dB for TE polarization and better than −12 dB for TM polarization for incidence angles from 0° to 80° and within the frequency band from 3 GHz to 8 GHz. The design principles are delineated, enabling the development of other absorbing structures suitable for any tissue of interest. A calibration method and procedure are also developed and employed with the reported measurements, which allow for de-embedding the effect of the lossy tissue medium and extracting the intrinsic reflection coefficient of the absorber. The proposed structure demonstrates superior absorption compared to prior designs and provides a much-needed solution for the construction of non-reflective enclosures for microwave biomedical imaging applications.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 2","pages":"133-140"},"PeriodicalIF":3.0,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144117397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Assessment of a Smart Skin for Temperature Monitoring During Superficial Microwave Hyperthermia 用于表面微波热疗过程中温度监测的智能皮肤的实验评估
IF 3.2
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2025-01-17 DOI: 10.1109/JERM.2024.3524679
Francesco Lestini;Alessandro DiCarlofelice;Piero Tognolatti;Gaetano Marrocco;Cecilia Occhiuzzi
{"title":"Experimental Assessment of a Smart Skin for Temperature Monitoring During Superficial Microwave Hyperthermia","authors":"Francesco Lestini;Alessandro DiCarlofelice;Piero Tognolatti;Gaetano Marrocco;Cecilia Occhiuzzi","doi":"10.1109/JERM.2024.3524679","DOIUrl":"https://doi.org/10.1109/JERM.2024.3524679","url":null,"abstract":"This paper presents the thermal validation of a Radio-Thermal Monitoring Sheet (R-TMS) designed for monitoring microwave hyperthermia treatments. The R-TMS consists of a grid of 77 passive Ultra High Frequency (UHF) Radio Frequency Identification (RFID) temperature sensors, which are wirelessly interrogated by an external reader integrated within the hyperthermia system, sharing the same antenna. The system was designed to ensure minimal interference with the therapeutic electromagnetic field while providing real-time feedback on skin temperature during the therapy. Laboratory assessments demonstrated the system's robustness against high-power electromagnetic fields, showing no significant self-heating or signal degradation. Pre-clinical tests confirmed that the R-TMS does not compromise treatment effectiveness or patient safety, with temperature monitoring results closely matching those obtained from conventional thermocouple-based methods. The proposed system offers a promising low-cost, wireless alternative for enhancing the safety and efficacy of superficial hyperthermia treatments.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 3","pages":"326-334"},"PeriodicalIF":3.2,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Novel Dielectric Fingerprinting Tool for Histopathology Assessment Leveraging AI and RF: A Feasibility Study Using Gastrointestinal Tissues 利用人工智能和射频技术进行组织病理学评估的新型介质指纹识别工具:利用胃肠道组织的可行性研究
IF 3.2
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2025-01-13 DOI: 10.1109/JERM.2024.3523861
Sunil Gaddam;Poulami Samaddar;Keerthy Gopalakrishnan;Mansunderbir Singh;Priyanka Anvekar;Suganti Shivaram;Shuvashis Dey;Sayan Roy;Dipankar Mitra;Shivaram P. Arunachalam
{"title":"A Novel Dielectric Fingerprinting Tool for Histopathology Assessment Leveraging AI and RF: A Feasibility Study Using Gastrointestinal Tissues","authors":"Sunil Gaddam;Poulami Samaddar;Keerthy Gopalakrishnan;Mansunderbir Singh;Priyanka Anvekar;Suganti Shivaram;Shuvashis Dey;Sayan Roy;Dipankar Mitra;Shivaram P. Arunachalam","doi":"10.1109/JERM.2024.3523861","DOIUrl":"https://doi.org/10.1109/JERM.2024.3523861","url":null,"abstract":"Digital representation of tissues allows the examination of tissue morphology in new ways enabling patient stratification for effective treatments. Current slide-scanning techniques capture the visible details of the tissue as whole-slide images and digitally record them in the form of spatial and color relationships. Specialized experimental techniques like dielectric spectroscopy can also be used to investigate a tissue's response to an applied electric field. This study used the dielectric spectroscopy method to collect the complex permittivity of healthy and abnormal biopsy tissues excised during Gastroenterology procedures. A single pole Cole-Cole model is fitted to the measurements dataset to extract the Cole-Cole parameters which are used as features in the machine learning binary classification model. The model's performance demonstrates the feasibility of using microwave-based spectroscopy measurements to create a digital dielectric fingerprint for tissues under investigation.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 3","pages":"318-325"},"PeriodicalIF":3.2,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revisiting the Impact of Inter-Channel Coupling and Thermal Noise Correlation on MRI Receive-Array Performance: A Simulation Study 通道间耦合和热噪声相关对MRI接收阵列性能影响的模拟研究
IF 3.2
IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology Pub Date : 2024-12-18 DOI: 10.1109/JERM.2024.3509589
Paul-François Gapais;Michel Luong;Alexis Amadon
{"title":"Revisiting the Impact of Inter-Channel Coupling and Thermal Noise Correlation on MRI Receive-Array Performance: A Simulation Study","authors":"Paul-François Gapais;Michel Luong;Alexis Amadon","doi":"10.1109/JERM.2024.3509589","DOIUrl":"https://doi.org/10.1109/JERM.2024.3509589","url":null,"abstract":"In modern magnetic resonance imaging scanners, the signal reception is carried out by a phased array of 32 resonators or more. The electromagnetic coupling between channels becomes stronger as the density of resonators, or RF coils, increases. The inter-channel coupling has generally been considered an adverse effect that should be mitigated to provide the highest signal-to-noise ratio and the lowest g-factor. Both are related to the resolution or quality of the images. The numerical simulations of this study show that this mitigation is unnecessary as long as only the contribution of thermal noise is considered.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 3","pages":"310-317"},"PeriodicalIF":3.2,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144904692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信