{"title":"微秒脉冲刺激下干细胞模型的高级微剂量学和神经功能化多物理场","authors":"Sara Fontana;Laura Caramazza;Micol Colella;Noemi Dolciotti;Alessandra Paffi;Victoria Moreno Manzano;Claudia Consales;Francesca Apollonio;Micaela Liberti","doi":"10.1109/JERM.2024.3468024","DOIUrl":null,"url":null,"abstract":"<bold>Objectives:</b> in recent biomedical applications for regenerative and tissue engineering, the use of electric and magnetic fields is increasingly exploited. Among the wide application range, an innovative treatment for Spinal Cord Injury (SCI) is urgent. The European project RISEUP proposes a novel device development, that will provide highly intense microsecond pulsed electric fields (μsPEFs) to stimulate stem cells differentiation towards neuronal phenotypes, through an electroporation-driven process, and regenerate the lesioned tissue. Within RISEUP the use of advanced computational models is crucial to predict the cellular functional response through microdosimetry studies. <bold>Technology or Method:</b> a multiphysic neuro-functionalized computational model has been built, using a realistic induced Neuronal Stem Cell (iNSC) model (a iNSC digital twin), to predict the effect of μsPEFs stimulation on both neuronal response and pore formation dynamics. <bold>Results:</b> considering a 100-μsPEF and an intensity of 30 kV/m, the pore density can reach up to 10<sup>14</sup> m<sup>−2</sup> over the plasma membrane, with a consequent hyperpolarization and a phase shift of the neuronal firing. Whereas, where the pore density remains at its default value 10<sup>9</sup> m<sup>−2</sup>, the neuronal response is slightly affected in spikes frequency and shape, but still maintaining its firing functions. <bold>Conclusions</b>: this study provides an innovative multiphysics implementation on a realist 2D iNSC model, that has demonstrated the 100-μsPEF influence on the neurodynamic response. <bold>Clinical or Biological Impact:</b> the results obtained give powerful insights for further <italic>in vitro</i> and <italic>in vivo</i> experiments, that will validate the use of the device proposed within RISEUP for SCI regeneration.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 2","pages":"173-182"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advanced Microdosimetric and Neurofunctionalized Multiphysics on Stem Cells Models Under Microsecond Pulse Stimulation\",\"authors\":\"Sara Fontana;Laura Caramazza;Micol Colella;Noemi Dolciotti;Alessandra Paffi;Victoria Moreno Manzano;Claudia Consales;Francesca Apollonio;Micaela Liberti\",\"doi\":\"10.1109/JERM.2024.3468024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<bold>Objectives:</b> in recent biomedical applications for regenerative and tissue engineering, the use of electric and magnetic fields is increasingly exploited. Among the wide application range, an innovative treatment for Spinal Cord Injury (SCI) is urgent. The European project RISEUP proposes a novel device development, that will provide highly intense microsecond pulsed electric fields (μsPEFs) to stimulate stem cells differentiation towards neuronal phenotypes, through an electroporation-driven process, and regenerate the lesioned tissue. Within RISEUP the use of advanced computational models is crucial to predict the cellular functional response through microdosimetry studies. <bold>Technology or Method:</b> a multiphysic neuro-functionalized computational model has been built, using a realistic induced Neuronal Stem Cell (iNSC) model (a iNSC digital twin), to predict the effect of μsPEFs stimulation on both neuronal response and pore formation dynamics. <bold>Results:</b> considering a 100-μsPEF and an intensity of 30 kV/m, the pore density can reach up to 10<sup>14</sup> m<sup>−2</sup> over the plasma membrane, with a consequent hyperpolarization and a phase shift of the neuronal firing. Whereas, where the pore density remains at its default value 10<sup>9</sup> m<sup>−2</sup>, the neuronal response is slightly affected in spikes frequency and shape, but still maintaining its firing functions. <bold>Conclusions</b>: this study provides an innovative multiphysics implementation on a realist 2D iNSC model, that has demonstrated the 100-μsPEF influence on the neurodynamic response. <bold>Clinical or Biological Impact:</b> the results obtained give powerful insights for further <italic>in vitro</i> and <italic>in vivo</i> experiments, that will validate the use of the device proposed within RISEUP for SCI regeneration.\",\"PeriodicalId\":29955,\"journal\":{\"name\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"volume\":\"9 2\",\"pages\":\"173-182\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10717441/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10717441/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Advanced Microdosimetric and Neurofunctionalized Multiphysics on Stem Cells Models Under Microsecond Pulse Stimulation
Objectives: in recent biomedical applications for regenerative and tissue engineering, the use of electric and magnetic fields is increasingly exploited. Among the wide application range, an innovative treatment for Spinal Cord Injury (SCI) is urgent. The European project RISEUP proposes a novel device development, that will provide highly intense microsecond pulsed electric fields (μsPEFs) to stimulate stem cells differentiation towards neuronal phenotypes, through an electroporation-driven process, and regenerate the lesioned tissue. Within RISEUP the use of advanced computational models is crucial to predict the cellular functional response through microdosimetry studies. Technology or Method: a multiphysic neuro-functionalized computational model has been built, using a realistic induced Neuronal Stem Cell (iNSC) model (a iNSC digital twin), to predict the effect of μsPEFs stimulation on both neuronal response and pore formation dynamics. Results: considering a 100-μsPEF and an intensity of 30 kV/m, the pore density can reach up to 1014 m−2 over the plasma membrane, with a consequent hyperpolarization and a phase shift of the neuronal firing. Whereas, where the pore density remains at its default value 109 m−2, the neuronal response is slightly affected in spikes frequency and shape, but still maintaining its firing functions. Conclusions: this study provides an innovative multiphysics implementation on a realist 2D iNSC model, that has demonstrated the 100-μsPEF influence on the neurodynamic response. Clinical or Biological Impact: the results obtained give powerful insights for further in vitro and in vivo experiments, that will validate the use of the device proposed within RISEUP for SCI regeneration.