Size-Adaptive Occipital 18-Channel Receive-Only RF Coil for 3T MRI

IF 3 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
William Mathieu;Milica Popović;Reza Farivar
{"title":"Size-Adaptive Occipital 18-Channel Receive-Only RF Coil for 3T MRI","authors":"William Mathieu;Milica Popović;Reza Farivar","doi":"10.1109/JERM.2024.3465354","DOIUrl":null,"url":null,"abstract":"The performance of a conformal occipital receive-only radio-frequency (RF) array is demonstrated at 3T. The ultimate aim of this larger coil is to improve whole-brain magnetic resonance imaging (MRI) regardless of a person's head size and shape. The occipital array contains 18-channels built on a 3D-printed 3-mm thick thermoplastic polyurethane (TPU) plate, which acts as a flexible substrate. To show the performance improvements of our design a comparative study was performed where three differently shaped phantoms were used when imaging by our occipital array then by a standard rigid 64-channel head product coil (posterior 40-channel section only). Signal-to-noise-ratio (SNR) and noise correlation performance were evaluated. Compared to the product coil, the flexible occipital array improved mean SNR by 2.8×. Noise correlation was comparable to the product coil. These results lead us to conclude that our design represents a viable approach to improve SNR for differently shaped heads and supports the feasibility of a larger 128-channel size-adaptable whole-head array currently in development.","PeriodicalId":29955,"journal":{"name":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","volume":"9 2","pages":"166-172"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Electromagnetics RF and Microwaves in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10709353/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of a conformal occipital receive-only radio-frequency (RF) array is demonstrated at 3T. The ultimate aim of this larger coil is to improve whole-brain magnetic resonance imaging (MRI) regardless of a person's head size and shape. The occipital array contains 18-channels built on a 3D-printed 3-mm thick thermoplastic polyurethane (TPU) plate, which acts as a flexible substrate. To show the performance improvements of our design a comparative study was performed where three differently shaped phantoms were used when imaging by our occipital array then by a standard rigid 64-channel head product coil (posterior 40-channel section only). Signal-to-noise-ratio (SNR) and noise correlation performance were evaluated. Compared to the product coil, the flexible occipital array improved mean SNR by 2.8×. Noise correlation was comparable to the product coil. These results lead us to conclude that our design represents a viable approach to improve SNR for differently shaped heads and supports the feasibility of a larger 128-channel size-adaptable whole-head array currently in development.
尺寸自适应枕骨18通道仅接收射频线圈用于3T MRI
在3T下演示了共形枕部仅接收射频(RF)阵列的性能。这种大线圈的最终目的是改善全脑磁共振成像(MRI),而不考虑人的头部大小和形状。枕部阵列包含18个通道,构建在3d打印的3毫米厚热塑性聚氨酯(TPU)板上,该板可作为柔性基板。为了展示我们设计的性能改进,我们进行了一项比较研究,其中使用我们的枕部阵列和标准刚性64通道头部产品线圈(仅后40通道部分)成像时使用了三种不同形状的幻影。评估了信噪比(SNR)和噪声相关性能。与产品线圈相比,柔性枕阵列的平均信噪比提高了2.8倍。噪声相关性与产品线圈相当。这些结果使我们得出结论,我们的设计代表了一种可行的方法来提高不同形状头部的信噪比,并支持目前正在开发的更大的128通道尺寸适应性全头阵列的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.40%
发文量
58
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信