ACS Measurement Science Au最新文献

筛选
英文 中文
Decoupling Variable Capacitance and Diffusive Components of Active Solid–Liquid Interfaces with Flex Points 用柔性点解耦活性固液界面的可变电容和扩散成分
ACS Measurement Science Au Pub Date : 2024-08-29 DOI: 10.1021/acsmeasuresciau.4c00057
Liam Deehan, Ajeet Kumar Kaushik, Ganga Ram Chaudhary, Pagona Papakonstantinou, Nikhil Bhalla
{"title":"Decoupling Variable Capacitance and Diffusive Components of Active Solid–Liquid Interfaces with Flex Points","authors":"Liam Deehan, Ajeet Kumar Kaushik, Ganga Ram Chaudhary, Pagona Papakonstantinou, Nikhil Bhalla","doi":"10.1021/acsmeasuresciau.4c00057","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00057","url":null,"abstract":"Understanding the current transport characteristics of electrode interfaces is essential for optimizing device performance across a wide range of applications including bio-/chemical sensing and energy storage sectors. Cyclic voltammetry (CV) is a popular method for studying interfacial properties, particularly those involving redox systems. However, it remains challenging to differentiate between electron movements that contribute to capacitive and diffusive behaviors. In this study, we introduce a technique called flex point analysis, which uses a single differentiation step to separate capacitive and diffusive electron movements at the electrode interface during a redox reaction. Our results show that the variable capacitance at the electrode surface exhibited both positive and negative values on the order of 10<sup>–6</sup> (micro) Farad. This approach provides a clearer understanding of interfacial electron dynamics, enhancing the interpretation of CV data and potentially improving the design and optimization of related materials and devices.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194493","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silver Core Coated with Molecularly Imprinted Polymer as Adsorbent in Pipet-Tip Solid Phase Extraction for Neonicotinoids Determination from Coconut Water 用分子印迹聚合物涂覆的银芯作为吸附剂,在移液管吸头固相萃取中测定椰子水中的新烟碱类物质
ACS Measurement Science Au Pub Date : 2024-08-28 DOI: 10.1021/acsmeasuresciau.4c00036
Laíse Aparecida Fonseca Dinali, Anny Talita Maria da Silva, Keyller Bastos Borges
{"title":"Silver Core Coated with Molecularly Imprinted Polymer as Adsorbent in Pipet-Tip Solid Phase Extraction for Neonicotinoids Determination from Coconut Water","authors":"Laíse Aparecida Fonseca Dinali, Anny Talita Maria da Silva, Keyller Bastos Borges","doi":"10.1021/acsmeasuresciau.4c00036","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00036","url":null,"abstract":"In this work, we report an innovative adsorbent named Ag-MPS@MIP that has a core@shell structure, i.e., silver nanoparticles modified with 3-methacryloxypropyltrimethoxysilane as the core and molecularly imprinted polymer based on methacrylic acid as its shell. Thiamethoxam, imidacloprid, and acetamiprid were extracted from coconut water samples using Ag-MPS@MIP in pipet-tip solid phase, prior to high-performance liquid chromatography analysis. The separation was carried out on isocratic mode using a mobile phase consisting of C18 column (Phenomenex, 150 mm × 4.6 mm, 5 μm), ultrapure water acidified with 0.3% phosphoric acid:acetonitrile (78:22, v/v), flow rate at 1.0 mL min<sup>–1</sup>, injection volume of 10 μL, temperature of 25 °C, and wavelength at 260 nm. The adsorbent and precursor materials were properly characterized by different instrumental techniques. The main factors affecting the recovery of analytes from coconut water samples by pipet-tip solid phase were optimized, such as sample volume (250 μL), sample pH (pH = 5.0), ionic strength (1%, m/v), washing solvent (300 μL ultrapure water), volume and type of eluent (500 μL methanol), amount of adsorbent (15 mg), cycle of percolation–dispensing (1×), and reuse (5×). Thereby, the neonicotinoids presented extraction recoveries between 82.80 and 96.36%, enrichment factor of 5, linearity ranged from 15 to 4000 ng mL<sup>–1</sup>, correlation coefficient (<i>r</i>) &gt; 0.99, limit of detection of 5 ng mL<sup>–1</sup>, satisfactory selectivity, stability, and proper precision (RSD%: 0.52–9.64%) and accuracy (RE%: −5.19–6.45%). The method was successfully applied to real samples of coconut water.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194491","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging (nano-DESI MSI): A Tutorial Review 纳米喷雾解吸电喷雾质谱成像(nano-DESI MSI):教程综述
ACS Measurement Science Au Pub Date : 2024-08-21 DOI: 10.1021/acsmeasuresciau.4c00028
Mushfeqa Iqfath, Syeda Nazifa Wali, Sara Amer, Emerson Hernly, Julia Laskin
{"title":"Nanospray Desorption Electrospray Ionization Mass Spectrometry Imaging (nano-DESI MSI): A Tutorial Review","authors":"Mushfeqa Iqfath, Syeda Nazifa Wali, Sara Amer, Emerson Hernly, Julia Laskin","doi":"10.1021/acsmeasuresciau.4c00028","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00028","url":null,"abstract":"Nanospray desorption electrospray ionization (nano-DESI) is a liquid-based ambient mass spectrometry imaging (MSI) technique that enables visualization of analyte distributions in biological samples down to cellular-level spatial resolution. Since its inception, significant advancements have been made to the nano-DESI experimental platform to facilitate molecular imaging with high throughput, deep molecular coverage, and spatial resolution better than 10 μm. The molecular selectivity of nano-DESI MSI has been enhanced using new data acquisition strategies, the development of separation and online derivatization approaches for isobar separation and isomer-selective imaging, and the optimization of the working solvent composition to improve analyte extraction and ionization efficiency. Furthermore, nano-DESI MSI research has underscored the importance of matrix effects and established normalization methods for accurately measuring concentration gradients in complex biological samples. This tutorial offers a comprehensive guide to nano-DESI experiments, detailing fundamental principles and data acquisition and processing methods and discussing essential operational parameters.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142194492","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achiral Plasmonic Antennas Enhance Differential Absorption To Increase Preferential Detection of Chiral Single Molecules 手性质子天线增强差分吸收,提高手性单分子的优先检测率
ACS Measurement Science Au Pub Date : 2024-08-06 DOI: 10.1021/acsmeasuresciau.4c00026
Saaj Chattopadhyay, Julie S. Biteen
{"title":"Achiral Plasmonic Antennas Enhance Differential Absorption To Increase Preferential Detection of Chiral Single Molecules","authors":"Saaj Chattopadhyay, Julie S. Biteen","doi":"10.1021/acsmeasuresciau.4c00026","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00026","url":null,"abstract":"Plasmonic antennas increase the photon flux in their vicinity, which can lead to plasmon-enhanced fluorescence for molecules near these nanostructures. Here, we combine plasmon-coupled fluorescence and fluorescence-detected circular dichroism to build a specific and sensitive detection strategy for chiral single molecules. Electromagnetic simulations indicate that a two-dimensional gold nanoparticle dimer antenna enhances the electric field and optical chirality of a plane wave in its near field. Furthermore, this optical chirality enhancement can be tuned based on the polarization of the incident electric field, such that enhancing the optical chirality via these antennas will increase the differential absorption of parity-inverted fields. We measured the fluorescence from single molecules of chiral absorbers─Cy5 J-dimers assembled in double-stranded DNA backbones─and achieved increased detectability of these right-handed molecules near achiral gold nanoparticle dimer antennas under right circularly polarized illumination. This strategy offers a new approach to distinguishing weakly fluorescent enantiomers.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"116 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimizing Solid Microneedle Design: A Comprehensive ML-Augmented DOE Approach 优化固体微针设计:综合 ML 增强 DOE 方法
ACS Measurement Science Au Pub Date : 2024-08-06 DOI: 10.1021/acsmeasuresciau.4c00021
Ahmed Choukri Abdullah, Erfan Ahmadinejad, Savas Tasoglu
{"title":"Optimizing Solid Microneedle Design: A Comprehensive ML-Augmented DOE Approach","authors":"Ahmed Choukri Abdullah, Erfan Ahmadinejad, Savas Tasoglu","doi":"10.1021/acsmeasuresciau.4c00021","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00021","url":null,"abstract":"Microneedles (MNs), that is, a matrix of micrometer-scale needles, have diverse applications in drug delivery, skincare therapy, and health monitoring. MNs offer a minimally invasive alternative to hypodermic needles, characterized by rapid and painless procedures, cost-effective fabrication methods, and reduced tissue damage. This study explores four MN designs, cone-shaped, tapered cone-shaped, pyramidal with a square base, and pyramidal with a triangular-shaped base, and their optimization based on predefined criteria. The workflow encompasses three loading conditions: compressive load during insertion, critical buckling load, and bending loading resulting from incorrect insertion. Geometric parameters such as base radius/width, tip radius/width, height, and tapered angle tip influence the output criteria, namely, total deformation, critical buckling loads, factor of safety (FOS), and bending stress. The comprehensive framework employing a design of experiment approach within the ANSYS workbench toolbox establishes a mathematical model and a response surface fitting model. The resulting regression model, sensitivity chart, and response curve are used to create a multiobjective optimization problem that helps achieve an optimized MN geometrical design across the introduced four shapes, integrating machine learning (ML) techniques. This study contributes valuable insights into a potential ML-augmented optimization framework for MNs via needle designs to stay durable for various physiologically relevant conditions.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141931242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cross-Species Applications of Peptide Substrate Reporters to Quantitative Measurements of Kinase Activity 多肽底物报告器在激酶活性定量测量中的跨物种应用
ACS Measurement Science Au Pub Date : 2024-08-02 DOI: 10.1021/acsmeasuresciau.4c00030
Mengqi Jonathan Fan, Misha Mehra, Kunwei Yang, Rahuljeet S. Chadha, Sababa Anber, Michelle L. Kovarik
{"title":"Cross-Species Applications of Peptide Substrate Reporters to Quantitative Measurements of Kinase Activity","authors":"Mengqi Jonathan Fan, Misha Mehra, Kunwei Yang, Rahuljeet S. Chadha, Sababa Anber, Michelle L. Kovarik","doi":"10.1021/acsmeasuresciau.4c00030","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00030","url":null,"abstract":"Peptide substrate reporters are short chains of amino acids designed to act as substrates for enzymes of interest. Combined with capillary electrophoresis and laser-induced fluorescence detection (CE-LIF), they are powerful molecular tools for quantitative measurements of enzyme activity even at the level of single cells. Although most peptide substrate reporters have been optimized for human or murine cells in health-related applications, their performance in nonmammalian organisms remains largely unexplored. In this study, we evaluated three peptide substrate reporters for protein kinase B (PKB) in two eukaryotic microbes, <i>Dictyostelium discoideum</i> and <i>Tetrahymena thermophila</i>, which are evolutionarily distant from mammals and from each other yet express PKB homologues. All three peptide substrate reporters were phosphorylated in lysates from both organisms but with varying phosphorylation kinetics and stability. To demonstrate reporter utility, we used one to screen for and identify the previously unknown stimulus needed to activate PHK5, the PKB homologue in <i>T. thermophila</i>. In <i>D. discoideum</i>, we employed the highly quantitative nature of these assays using CE-LIF to make precise measurements of PKB activity in response to transient stimulation, drug treatment, and genetic mutation. These results underscore the broad applicability of peptide substrate reporters across diverse species while highlighting the need for further research to determine effective peptide stabilization strategies across different biological contexts.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"44 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waveform Optimization for the In Vitro Detection of Caffeic Acid by Fast-Scan Cyclic Voltammetry 快速扫描循环伏安法体外检测咖啡酸的波形优化
ACS Measurement Science Au Pub Date : 2024-07-31 DOI: 10.1021/acsmeasuresciau.4c00029
Joseph N. Tonn, Richard B. Keithley
{"title":"Waveform Optimization for the In Vitro Detection of Caffeic Acid by Fast-Scan Cyclic Voltammetry","authors":"Joseph N. Tonn, Richard B. Keithley","doi":"10.1021/acsmeasuresciau.4c00029","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00029","url":null,"abstract":"Caffeic acid is a polyphenol of critical importance in plants, involved in a variety of physiological processes including lignin formation, cellular growth, stress response, and external signaling. This small molecule also acts as a powerful antioxidant and thus has therapeutic potential for a variety of health conditions. Traditional methods of detecting caffeic acid lack appropriate temporal resolution to monitor real time concentration changes on a subsecond time scale with nM detection limits. Here we report on the first usage of fast-scan cyclic voltammetry with carbon fiber microelectrodes for the detection of caffeic acid. Through the use of flow injection analysis, the optimal waveform for its detection under acidic conditions at a scan rate of 400 V/s was determined to be sawtooth-shaped, from 0 to 1.4 to −0.4 to 0 V. Signal was linear with concentration up to 1 μM with a sensitivity of 44.8 ± 1.3 nA/μM and a detection limit of 2.3 ± 0.2 nM. The stability of its detection was exceptional, with an average of 0.96% relative standard deviation across 32 consecutive injections. This waveform was also successful in detecting other catechol-based plant antioxidants including 5-chlorogenic acid, oleuropein, rosmarinic acid, chicoric acid, and caffeic acid phenethyl ester. Finally, we show the successful use of fast-scan cyclic voltammetry in monitoring the degradation of caffeic acid by polyphenol oxidase on a subsecond time scale <i>via</i> a novel modification of a Ramsson cell. This work demonstrates that fast-scan cyclic voltammetry can be used to successfully monitor real-time dynamic changes in the concentrations of catechol-containing plant polyphenols.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"38 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scanning Gas Diffusion Electrode Setup for Real-Time Analysis of Catalyst Layers 用于实时分析催化剂层的扫描气体扩散电极装置
ACS Measurement Science Au Pub Date : 2024-07-12 DOI: 10.1021/acsmeasuresciau.4c00018
Ina Reichmann, Vicent Lloret, Konrad Ehelebe, Pascal Lauf, Ken Jenewein, Karl J. J. Mayrhofer, Serhiy Cherevko
{"title":"Scanning Gas Diffusion Electrode Setup for Real-Time Analysis of Catalyst Layers","authors":"Ina Reichmann, Vicent Lloret, Konrad Ehelebe, Pascal Lauf, Ken Jenewein, Karl J. J. Mayrhofer, Serhiy Cherevko","doi":"10.1021/acsmeasuresciau.4c00018","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00018","url":null,"abstract":"The scanning gas diffusion electrode (S-GDE) half-cell is introduced as a new tool to improve the evaluation of electrodes used in electrochemical energy conversion technologies. It allows both fast screening and fundamental studies of real catalyst layers by applying coupled mass spectrometry techniques such as inductively coupled plasma mass spectrometry and online gas mass spectrometry. Hence, the proposed setup overcomes the limitations of aqueous model systems and full cell-level studies, bridging the gap between the two approaches. In this proof-of-concept work, standard fuel cell electrodes are investigated at elevated oxygen reduction reaction current densities, while dissolved Pt<sup><i>x</i>+</sup> ions in the electrolyte and gaseous CO<sub>2</sub> in the outlet gas stream are detected to track platinum dissolution and carbon corrosion, respectively. Relevant current densities of up to 0.75 A cm<sup>–2</sup> are demonstrated. The electrochemically active surface area, oxygen reduction reaction activity, and Pt dissolution rates are quantified and benchmarked to the values obtained in the conventional stationary GDE half-cell. Moreover, it is found that Pt dissolution is suppressed when O<sub>2</sub> is purged into the catalyst layer. Overall, this work demonstrates the feasibility of fast fuel cell electrode screening obtaining, complementary to electrochemical, mass spectrometry data necessary in fundamental studies on structure/performance relationships under actual reaction conditions. While Pt/C, in relevance to its fuel cell application, is used in this study, the proposed setup can be applied in water electrolysis, CO<sub>2</sub> conversion, metal-air batteries, and other neighbor technologies.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141610731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impedimetric Measurement of Exchange Currents and Ionic Diffusion Coefficients in Individual Pseudocapacitive Nanoparticles 单个伪电容纳米粒子中交换电流和离子扩散系数的浸渍测量法
ACS Measurement Science Au Pub Date : 2024-07-11 DOI: 10.1021/acsmeasuresciau.4c00017
Brian Roehrich, Lior Sepunaru
{"title":"Impedimetric Measurement of Exchange Currents and Ionic Diffusion Coefficients in Individual Pseudocapacitive Nanoparticles","authors":"Brian Roehrich, Lior Sepunaru","doi":"10.1021/acsmeasuresciau.4c00017","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00017","url":null,"abstract":"Among electroanalytical techniques, electrochemical impedance spectroscopy (EIS) offers the unique advantage of a high degree of frequency resolution. This enables EIS to readily deconvolute between the capacitive, resistive, and diffusional processes that underlie electrochemical devices. Here, we report the measurement of impedance spectra of individual, pseudocapacitive nanoparticles. We chose Prussian blue as our model system, as it couples an electron-transfer reaction with sodium ion intercalation─processes which, while intrinsically convoluted, can be readily resolved using EIS. We used a scanning electrochemical cell microscope (SECCM) to isolate single Prussian blue particles in a microdroplet and measured their impedance spectra using the multi-sine, fast Fourier transform technique. In doing so, we were able to extract the exchange current density and sodium ion diffusivity for each particle, which respectively inform on their electronic and ionic conductivities. Surprisingly, these parameters vary by over an order of magnitude between particles and are not correlated to particle size nor to each other. The implication of this apparent heterogeneity is that in a hypothetical battery cathode, one active particle may transfer electrons 10 times faster than its neighbor; another may suffer from sluggish sodium ion transport and have restricted charging rate capabilities compared to a better-performing particle elsewhere in the same electrode. Our results inform on this intrinsic heterogeneity while demonstrating the utility of EIS in future single-particle studies.","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141614678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impedimetric Measurement of Exchange Currents and Ionic Diffusion Coefficients in Individual Pseudocapacitive Nanoparticles 单个伪电容纳米粒子中交换电流和离子扩散系数的浸渍测量法
IF 4.6
ACS Measurement Science Au Pub Date : 2024-07-11 DOI: 10.1021/acsmeasuresciau.4c0001710.1021/acsmeasuresciau.4c00017
Brian Roehrich,  and , Lior Sepunaru*, 
{"title":"Impedimetric Measurement of Exchange Currents and Ionic Diffusion Coefficients in Individual Pseudocapacitive Nanoparticles","authors":"Brian Roehrich,&nbsp; and ,&nbsp;Lior Sepunaru*,&nbsp;","doi":"10.1021/acsmeasuresciau.4c0001710.1021/acsmeasuresciau.4c00017","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00017https://doi.org/10.1021/acsmeasuresciau.4c00017","url":null,"abstract":"<p >Among electroanalytical techniques, electrochemical impedance spectroscopy (EIS) offers the unique advantage of a high degree of frequency resolution. This enables EIS to readily deconvolute between the capacitive, resistive, and diffusional processes that underlie electrochemical devices. Here, we report the measurement of impedance spectra of individual, pseudocapacitive nanoparticles. We chose Prussian blue as our model system, as it couples an electron-transfer reaction with sodium ion intercalation─processes which, while intrinsically convoluted, can be readily resolved using EIS. We used a scanning electrochemical cell microscope (SECCM) to isolate single Prussian blue particles in a microdroplet and measured their impedance spectra using the multi-sine, fast Fourier transform technique. In doing so, we were able to extract the exchange current density and sodium ion diffusivity for each particle, which respectively inform on their electronic and ionic conductivities. Surprisingly, these parameters vary by over an order of magnitude between particles and are not correlated to particle size nor to each other. The implication of this apparent heterogeneity is that in a hypothetical battery cathode, one active particle may transfer electrons 10 times faster than its neighbor; another may suffer from sluggish sodium ion transport and have restricted charging rate capabilities compared to a better-performing particle elsewhere in the same electrode. Our results inform on this intrinsic heterogeneity while demonstrating the utility of EIS in future single-particle studies.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 4","pages":"467–474 467–474"},"PeriodicalIF":4.6,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142010399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信