荧光成像结合SERS光谱揭示电刺激诱导干细胞分化过程中线粒体的分子应激反应。

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
ACS Measurement Science Au Pub Date : 2025-03-12 eCollection Date: 2025-06-18 DOI:10.1021/acsmeasuresciau.5c00005
Jiafeng Wang, Xiaozhang Qu, Zhimin Zhang, Xiuping Meng, Guohua Qi
{"title":"荧光成像结合SERS光谱揭示电刺激诱导干细胞分化过程中线粒体的分子应激反应。","authors":"Jiafeng Wang, Xiaozhang Qu, Zhimin Zhang, Xiuping Meng, Guohua Qi","doi":"10.1021/acsmeasuresciau.5c00005","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cells are a class of multipotential cells with the capability of self-replication, which can differentiate into multiple functional cells under extra stimulus. The differentiation of stem cells has important implications for tissue regeneration. Therefore, controllable regulation of dental pulp stem cell (DPSC) behaviors is critical for repairment and regeneration of damaged teeth tissues. Rapid promotion of DPSCs, directed differentiation, and revealing molecular events within the organelle level during the cell differentiation process are in great demand for regeneration of teeth, which remains a great challenge. Herein, we developed a highly effective and uncomplicated stimulation platform to promote the DPSCs for odontogenic differentiation based on impulse electrical stimulation and revealed the molecular stress response of mitochondria during cell differentiation based on fluorescence imaging combined with surface-enhanced Raman spectroscopy (SERS). Our approach can greatly shorten the DPSC differentiation time from usually more than 20 days to only about 3 days under 0.8 V for 5 min every day than drug stimulation. Notably, the glycogen and adenosine triphosphate levels within mitochondria were apparently elevated, which is conducive to improving the progression of cell differentiation. Simultaneously, the expression of mitofusin1 and mitofusin2 within mitochondria was significantly down-regulated during the differentiation process. Mechanistically, the molecular insights into mitochondria within DPSCs were clearly revealed through SERS spectra. It demonstrated that the expression of phenylalanine was significantly reduced, whereas the contents of tryptophan within mitochondria were promoted during the cell differentiation process. This study provides a comprehensive and clinically feasible strategy for the rapid promotion of DPSCs-directed differentiation and reveals the molecular dynamic changes within mitochondria, which broadens the biomedical cognition of electrical stimulation for dental pulp stem cell differentiation and provides a potential application for teeth tissue regeneration in the future.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 3","pages":"294-303"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183591/pdf/","citationCount":"0","resultStr":"{\"title\":\"Molecular Stress Response of Mitochondria during Electrostimulation Evoking Stem Cell Differentiation Revealed by Fluorescence Imaging Combined with SERS Spectra.\",\"authors\":\"Jiafeng Wang, Xiaozhang Qu, Zhimin Zhang, Xiuping Meng, Guohua Qi\",\"doi\":\"10.1021/acsmeasuresciau.5c00005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stem cells are a class of multipotential cells with the capability of self-replication, which can differentiate into multiple functional cells under extra stimulus. The differentiation of stem cells has important implications for tissue regeneration. Therefore, controllable regulation of dental pulp stem cell (DPSC) behaviors is critical for repairment and regeneration of damaged teeth tissues. Rapid promotion of DPSCs, directed differentiation, and revealing molecular events within the organelle level during the cell differentiation process are in great demand for regeneration of teeth, which remains a great challenge. Herein, we developed a highly effective and uncomplicated stimulation platform to promote the DPSCs for odontogenic differentiation based on impulse electrical stimulation and revealed the molecular stress response of mitochondria during cell differentiation based on fluorescence imaging combined with surface-enhanced Raman spectroscopy (SERS). Our approach can greatly shorten the DPSC differentiation time from usually more than 20 days to only about 3 days under 0.8 V for 5 min every day than drug stimulation. Notably, the glycogen and adenosine triphosphate levels within mitochondria were apparently elevated, which is conducive to improving the progression of cell differentiation. Simultaneously, the expression of mitofusin1 and mitofusin2 within mitochondria was significantly down-regulated during the differentiation process. Mechanistically, the molecular insights into mitochondria within DPSCs were clearly revealed through SERS spectra. It demonstrated that the expression of phenylalanine was significantly reduced, whereas the contents of tryptophan within mitochondria were promoted during the cell differentiation process. This study provides a comprehensive and clinically feasible strategy for the rapid promotion of DPSCs-directed differentiation and reveals the molecular dynamic changes within mitochondria, which broadens the biomedical cognition of electrical stimulation for dental pulp stem cell differentiation and provides a potential application for teeth tissue regeneration in the future.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":\"5 3\",\"pages\":\"294-303\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12183591/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsmeasuresciau.5c00005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/6/18 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsmeasuresciau.5c00005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/18 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

干细胞是一类具有自我复制能力的多能细胞,在额外刺激下可分化为多种功能细胞。干细胞的分化对组织再生具有重要意义。因此,牙髓干细胞(DPSC)行为的可控调控对于损伤牙组织的修复和再生至关重要。快速促进DPSCs的定向分化,揭示细胞分化过程中细胞器水平内的分子事件,是牙齿再生的迫切需要,也是一个巨大的挑战。本研究基于脉冲电刺激构建了一个高效、简单的刺激平台,促进DPSCs向牙源性分化,并基于荧光成像结合表面增强拉曼光谱(SERS)揭示了细胞分化过程中线粒体的分子应激反应。与药物刺激相比,我们的方法可以大大缩短DPSC分化时间,从通常的20多天缩短到每天在0.8 V下5分钟仅需3天左右。值得注意的是,线粒体内糖原和三磷酸腺苷水平明显升高,这有利于促进细胞分化的进展。同时,线粒体内mitofusin1和mitofusin2的表达在分化过程中显著下调。在机制上,通过SERS光谱清楚地揭示了DPSCs内线粒体的分子洞察力。结果表明,在细胞分化过程中,线粒体内苯丙氨酸的表达显著降低,而色氨酸的含量则显著增加。本研究为快速促进dpscs定向分化提供了全面且临床可行的策略,揭示了线粒体内的分子动力学变化,拓宽了电刺激牙髓干细胞分化的生物医学认知,为未来牙齿组织再生提供了潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Molecular Stress Response of Mitochondria during Electrostimulation Evoking Stem Cell Differentiation Revealed by Fluorescence Imaging Combined with SERS Spectra.

Stem cells are a class of multipotential cells with the capability of self-replication, which can differentiate into multiple functional cells under extra stimulus. The differentiation of stem cells has important implications for tissue regeneration. Therefore, controllable regulation of dental pulp stem cell (DPSC) behaviors is critical for repairment and regeneration of damaged teeth tissues. Rapid promotion of DPSCs, directed differentiation, and revealing molecular events within the organelle level during the cell differentiation process are in great demand for regeneration of teeth, which remains a great challenge. Herein, we developed a highly effective and uncomplicated stimulation platform to promote the DPSCs for odontogenic differentiation based on impulse electrical stimulation and revealed the molecular stress response of mitochondria during cell differentiation based on fluorescence imaging combined with surface-enhanced Raman spectroscopy (SERS). Our approach can greatly shorten the DPSC differentiation time from usually more than 20 days to only about 3 days under 0.8 V for 5 min every day than drug stimulation. Notably, the glycogen and adenosine triphosphate levels within mitochondria were apparently elevated, which is conducive to improving the progression of cell differentiation. Simultaneously, the expression of mitofusin1 and mitofusin2 within mitochondria was significantly down-regulated during the differentiation process. Mechanistically, the molecular insights into mitochondria within DPSCs were clearly revealed through SERS spectra. It demonstrated that the expression of phenylalanine was significantly reduced, whereas the contents of tryptophan within mitochondria were promoted during the cell differentiation process. This study provides a comprehensive and clinically feasible strategy for the rapid promotion of DPSCs-directed differentiation and reveals the molecular dynamic changes within mitochondria, which broadens the biomedical cognition of electrical stimulation for dental pulp stem cell differentiation and provides a potential application for teeth tissue regeneration in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信