ACS Measurement Science AuPub Date : 2025-04-02DOI: 10.1021/acsmeasuresciau.5c0001910.1021/acsmeasuresciau.5c00019
Yunong Wang, Malavika Shashishekar, Dana M. Spence* and Lane A. Baker*,
{"title":"Subcellular Mechanical Imaging of Erythrocytes with Optically Correlated Scanning Ion Conductance Microscopy","authors":"Yunong Wang, Malavika Shashishekar, Dana M. Spence* and Lane A. Baker*, ","doi":"10.1021/acsmeasuresciau.5c0001910.1021/acsmeasuresciau.5c00019","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.5c00019https://doi.org/10.1021/acsmeasuresciau.5c00019","url":null,"abstract":"<p >We report mapping the mechanical properties of human red blood cells at submicron scales. Mapping is achieved via a new approach to scanning ion conductance microscopy correlated with optical microscopy. A three-point calibration and affine transformation are utilized to correlate pixel locations registered in optical images with pipette position, which facilitates initial targeting and subsequent tracking and analysis of red blood cells. By recording the response of pipette approach curves and sample compliance at each approach, maps of the Young’s modulus of samples and pipette indentation are recorded at subcellular spatial resolution. Comparison of normal and diamide-treated red blood cells shows a significant increase in cell stiffness and a concomitant decrease in deformability, clearly demonstrating the quantitative abilities of the correlative approach taken here for stiffness measurements of intact cellular samples.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 3","pages":"345–352 345–352"},"PeriodicalIF":4.6,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.5c00019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144305736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Measurement Science AuPub Date : 2025-04-01DOI: 10.1021/acsmeasuresciau.4c0010010.1021/acsmeasuresciau.4c00100
Marlene H. Hill, Gabriel N. Meloni, Bruno G. Frenguelli and Patrick R. Unwin*,
{"title":"Transient Single Cell Hypoxia Induced by Localized Galvanostatic Oxygen Challenge","authors":"Marlene H. Hill, Gabriel N. Meloni, Bruno G. Frenguelli and Patrick R. Unwin*, ","doi":"10.1021/acsmeasuresciau.4c0010010.1021/acsmeasuresciau.4c00100","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00100https://doi.org/10.1021/acsmeasuresciau.4c00100","url":null,"abstract":"<p >Studying cells exposed to low and controllable oxygen levels is key to investigating various fundamental aspects of pathological states, such as stroke and cancer. At present, available methodologies applied in vitro focus on large groups of cells exposed to low oxygen conditions through slow-time approaches, such as environmental incubators or microfluidic devices. Here, we demonstrate a novel approach for titrating the local oxygen concentration around individual adhered PC12 cells, enabling single cells within a population to be exposed to hypoxic-like conditions. A 25 μm diameter platinum disk microelectrode performing the oxygen reduction reaction (ORR) at constant current (galvanostatic control) is used as a microscale oxygen scavenger that can be positioned precisely over individual cells. By coupling the galvanostatic oxygen challenge with confocal laser scanning microscopy (CLSM) and a commercially available hypoxia dye (Image-iT Green hypoxia reagent), we monitor the response of single cells when exposed to depleted oxygen concentrations over time. Numerical simulations are used to characterize the oxygen and pH gradient imposed by the microelectrode at different cathodic currents, revealing that within seconds, the oxygen depletion zone reaches a steady-state condition, extending a few microelectrode radii into solution, while the corresponding pH gradient is strongly compressed by the buffer solution. Cells under the microelectrode show a marked increase in average fluorescence rate relative to control, reporting their hypoxic conditions and demonstrating the effectiveness of the proposed method. Heterogenous cell response in a challenged group is also observed, highlighting the ability of this approach to investigate the natural heterogeneity in cell populations. This work provides a platform and roadmap for future studies of cellular systems where the ability to control and vary oxygen concentration on a rapid time scale would be beneficial.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 2","pages":"234–241 234–241"},"PeriodicalIF":4.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143832725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Measurement Science AuPub Date : 2025-04-01eCollection Date: 2025-04-16DOI: 10.1021/acsmeasuresciau.4c00100
Marlene H Hill, Gabriel N Meloni, Bruno G Frenguelli, Patrick R Unwin
{"title":"Transient Single Cell Hypoxia Induced by Localized Galvanostatic Oxygen Challenge.","authors":"Marlene H Hill, Gabriel N Meloni, Bruno G Frenguelli, Patrick R Unwin","doi":"10.1021/acsmeasuresciau.4c00100","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00100","url":null,"abstract":"<p><p>Studying cells exposed to low and controllable oxygen levels is key to investigating various fundamental aspects of pathological states, such as stroke and cancer. At present, available methodologies applied in vitro focus on large groups of cells exposed to low oxygen conditions through slow-time approaches, such as environmental incubators or microfluidic devices. Here, we demonstrate a novel approach for titrating the local oxygen concentration around individual adhered PC12 cells, enabling single cells within a population to be exposed to hypoxic-like conditions. A 25 μm diameter platinum disk microelectrode performing the oxygen reduction reaction (ORR) at constant current (galvanostatic control) is used as a microscale oxygen scavenger that can be positioned precisely over individual cells. By coupling the galvanostatic oxygen challenge with confocal laser scanning microscopy (CLSM) and a commercially available hypoxia dye (Image-iT Green hypoxia reagent), we monitor the response of single cells when exposed to depleted oxygen concentrations over time. Numerical simulations are used to characterize the oxygen and pH gradient imposed by the microelectrode at different cathodic currents, revealing that within seconds, the oxygen depletion zone reaches a steady-state condition, extending a few microelectrode radii into solution, while the corresponding pH gradient is strongly compressed by the buffer solution. Cells under the microelectrode show a marked increase in average fluorescence rate relative to control, reporting their hypoxic conditions and demonstrating the effectiveness of the proposed method. Heterogenous cell response in a challenged group is also observed, highlighting the ability of this approach to investigate the natural heterogeneity in cell populations. This work provides a platform and roadmap for future studies of cellular systems where the ability to control and vary oxygen concentration on a rapid time scale would be beneficial.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 2","pages":"234-241"},"PeriodicalIF":4.6,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144050689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Measurement Science AuPub Date : 2025-03-27DOI: 10.1021/acsmeasuresciau.4c0009110.1021/acsmeasuresciau.4c00091
Kamsy Lerae Anderson, and , Martin Andrew Edwards*,
{"title":"A Tutorial for Scanning Electrochemical Cell Microscopy (SECCM) Measurements: Step-by-Step Instructions, Visual Resources, and Guidance for First Experiments","authors":"Kamsy Lerae Anderson, and , Martin Andrew Edwards*, ","doi":"10.1021/acsmeasuresciau.4c0009110.1021/acsmeasuresciau.4c00091","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00091https://doi.org/10.1021/acsmeasuresciau.4c00091","url":null,"abstract":"<p >Scanning electrochemical cell microscopy (SECCM) produces nanoscale-resolution electrochemical maps of electrode surfaces using the meniscus at the tip of an electrolyte-filled nanopipette as a mobile electrochemical cell. While the use and range of applications of SECCM have grown rapidly since its introduction, the pathway to performing SECCM measurements can be daunting to those without direct access to expert users. This work fills this expertise gap by providing a step-by-step guide to performing one’s first SECCM experiments, including troubleshooting strategies, videos/images, suggested parameters and experimental systems, and representative data (of both successful experiments and common problems). No background in SECCM is assumed and fundamentals are clearly explained at each stage with a rationale for the experimental steps provided. This work provides an entry point for the uninitiated to understand and use this powerful nanoscale electrochemical characterization technique.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 2","pages":"160–177 160–177"},"PeriodicalIF":4.6,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00091","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143832930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Measurement Science AuPub Date : 2025-03-27eCollection Date: 2025-04-16DOI: 10.1021/acsmeasuresciau.4c00091
Kamsy Lerae Anderson, Martin Andrew Edwards
{"title":"A Tutorial for Scanning Electrochemical Cell Microscopy (SECCM) Measurements: Step-by-Step Instructions, Visual Resources, and Guidance for First Experiments.","authors":"Kamsy Lerae Anderson, Martin Andrew Edwards","doi":"10.1021/acsmeasuresciau.4c00091","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00091","url":null,"abstract":"<p><p>Scanning electrochemical cell microscopy (SECCM) produces nanoscale-resolution electrochemical maps of electrode surfaces using the meniscus at the tip of an electrolyte-filled nanopipette as a mobile electrochemical cell. While the use and range of applications of SECCM have grown rapidly since its introduction, the pathway to performing SECCM measurements can be daunting to those without direct access to expert users. This work fills this expertise gap by providing a step-by-step guide to performing one's first SECCM experiments, including troubleshooting strategies, videos/images, suggested parameters and experimental systems, and representative data (of both successful experiments and common problems). No background in SECCM is assumed and fundamentals are clearly explained at each stage with a rationale for the experimental steps provided. This work provides an entry point for the uninitiated to understand and use this powerful nanoscale electrochemical characterization technique.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 2","pages":"160-177"},"PeriodicalIF":4.6,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144049851","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Measurement Science AuPub Date : 2025-03-19DOI: 10.1021/acsmeasuresciau.4c0010210.1021/acsmeasuresciau.4c00102
A. Narváez*, J. Jiménez, M. Rodríguez-Núñez, M. Torre, E. Carro, M.-P. Marco and E. Domínguez,
{"title":"A Fast Immunosensor Based on Biohybrid Self-Assembled Nanostructures for the Detection of KYNA as a Cerebrospinal Fluid Biomarker for Alzehimer’s Disease","authors":"A. Narváez*, J. Jiménez, M. Rodríguez-Núñez, M. Torre, E. Carro, M.-P. Marco and E. Domínguez, ","doi":"10.1021/acsmeasuresciau.4c0010210.1021/acsmeasuresciau.4c00102","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00102https://doi.org/10.1021/acsmeasuresciau.4c00102","url":null,"abstract":"<p >Although the role of kynurenic acid (KYNA) is not yet fully understood, recent research has implicated this tryptophan (Trp) metabolite as a significant biomarker in neurodegenerative diseases. In this study, we developed an immunosensor platform based on self-assembled polyelectrolyte multilayers (PEMs), employing an enzyme-labeled immunoreagent in a competitive displacement format that requires only a single wash step. This immunosensor enables the detection of KYNA and Trp with detection limits (LOD) of 9 pg/mL and 1.2 ng/mL, respectively. Results validated by traditional ELISA methods indicated elevated levels of KYNA and an increased KYNA/Trp ratio in the cerebrospinal fluid (CSF) of Alzheimer’s patients compared to controls, consistent with previous findings. Additionally, this immunosensor platform can be readily adapted to detect other neuroactive Trp metabolites by substituting specific immunoreagents, supporting a flexible profile-based approach. This platform could serve as a rapid, cost-effective clinical tool for monitoring neurological and psychiatric disorders, potentially advancing therapeutic strategy development.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 2","pages":"242–249 242–249"},"PeriodicalIF":4.6,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00102","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143832641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Measurement Science AuPub Date : 2025-03-19eCollection Date: 2025-04-16DOI: 10.1021/acsmeasuresciau.4c00102
A Narváez, J Jiménez, M Rodríguez-Núñez, M Torre, E Carro, M-P Marco, E Domínguez
{"title":"A Fast Immunosensor Based on Biohybrid Self-Assembled Nanostructures for the Detection of KYNA as a Cerebrospinal Fluid Biomarker for Alzehimer's Disease.","authors":"A Narváez, J Jiménez, M Rodríguez-Núñez, M Torre, E Carro, M-P Marco, E Domínguez","doi":"10.1021/acsmeasuresciau.4c00102","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00102","url":null,"abstract":"<p><p>Although the role of kynurenic acid (KYNA) is not yet fully understood, recent research has implicated this tryptophan (Trp) metabolite as a significant biomarker in neurodegenerative diseases. In this study, we developed an immunosensor platform based on self-assembled polyelectrolyte multilayers (PEMs), employing an enzyme-labeled immunoreagent in a competitive displacement format that requires only a single wash step. This immunosensor enables the detection of KYNA and Trp with detection limits (LOD) of 9 pg/mL and 1.2 ng/mL, respectively. Results validated by traditional ELISA methods indicated elevated levels of KYNA and an increased KYNA/Trp ratio in the cerebrospinal fluid (CSF) of Alzheimer's patients compared to controls, consistent with previous findings. Additionally, this immunosensor platform can be readily adapted to detect other neuroactive Trp metabolites by substituting specific immunoreagents, supporting a flexible profile-based approach. This platform could serve as a rapid, cost-effective clinical tool for monitoring neurological and psychiatric disorders, potentially advancing therapeutic strategy development.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 2","pages":"242-249"},"PeriodicalIF":4.6,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144056437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Measurement Science AuPub Date : 2025-03-13eCollection Date: 2025-04-16DOI: 10.1021/acsmeasuresciau.4c00093
Tingting Han, Sini Chen, Tao Song, Dongxue Han, Li Niu
{"title":"Single-Frequency Effective Capacitance <i>C</i> <sub>ec</sub> and Membrane Resistance <i>Z</i> Readout for Solid-Contact Ion-Selective Electrodes.","authors":"Tingting Han, Sini Chen, Tao Song, Dongxue Han, Li Niu","doi":"10.1021/acsmeasuresciau.4c00093","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00093","url":null,"abstract":"<p><p>Here, we propose new single-frequency effective capacitance <i>C</i> <sub>ec</sub> and membrane resistance <i>Z</i> readout principle for solid-contact ion-selective electrodes (SCISEs). Conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrenesulfonate (PSS<sup>-</sup>), <i>i.e.</i>, PEDOT(PSS), as solid contact and valinomycin-based membrane were prepared for K<sup>+</sup>-SCISEs. At high frequencies, the membrane resistance of K<sup>+</sup>-SCISEs corresponding to impedance absolute value <i>Z</i> was recorded constantly as KCl aqueous solution diluted with water. The membrane resistance <i>Z</i> increases as the electrolyte concentration decreases. Under identical dilution steps, the linear slope of the logarithmic membrane resistance log<i>Z</i> <i>vs</i> log<i>a</i> <sub>K+</sub> for K<sup>+</sup>-SCISEs with the spin-coated membrane is larger than that of the electrode covered with the drop-cast membrane. As the K<sup>+</sup>-SCISE resistance with the spin-coated membrane was reduced to hundreds of Ω, the log<i>Z</i> of K<sup>+</sup>-SCISEs is linearly proportional to log<i>a</i> <sub>K+</sub> in the range of -1 to -3.4, providing a possibility of utilizing membrane resistance <i>Z</i> as a calibration-free analytical signal for SCISEs. The effective capacitance <i>C</i> <sub>ec</sub> of K<sup>+</sup>-SCISEs with the spin-coated membrane was performed in 0.1 M KCl applied with single frequency ranging from 1 MHz and decreases by a factor of 10 to 10 mHz. The obtained <i>C</i> <sub>ec</sub> of K<sup>+</sup>-SCISEs with the spin-coated membrane is linearly proportional to log<i>f</i>in the range of 1 MHz to 10 Hz with a slope of <i>ca.</i> -0.97, while at a low frequency ranging from 1 Hz to 10 mHz, the linear slope of log<i>C</i> <sub>ec</sub> <i>vs</i> log<i>f</i> is suppressed, where Warburg diffusion takes effect. Furthermore, the membrane resistance <i>Z</i> is independent of applied high frequencies, and the effective capacitance <i>C</i> <sub>ec</sub> is independent of the excitation amplitude.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 2","pages":"216-225"},"PeriodicalIF":4.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12006956/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144027057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Measurement Science AuPub Date : 2025-03-13DOI: 10.1021/acsmeasuresciau.4c0009310.1021/acsmeasuresciau.4c00093
Tingting Han*, Sini Chen, Tao Song, Dongxue Han and Li Niu,
{"title":"Single-Frequency Effective Capacitance Cec and Membrane Resistance Z Readout for Solid-Contact Ion-Selective Electrodes","authors":"Tingting Han*, Sini Chen, Tao Song, Dongxue Han and Li Niu, ","doi":"10.1021/acsmeasuresciau.4c0009310.1021/acsmeasuresciau.4c00093","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.4c00093https://doi.org/10.1021/acsmeasuresciau.4c00093","url":null,"abstract":"<p >Here, we propose new single-frequency effective capacitance <i>C</i><sub>ec</sub> and membrane resistance <i>Z</i> readout principle for solid-contact ion-selective electrodes (SCISEs). Conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with polystyrenesulfonate (PSS<sup>–</sup>), <i>i.e.</i>, PEDOT(PSS), as solid contact and valinomycin-based membrane were prepared for K<sup>+</sup>-SCISEs. At high frequencies, the membrane resistance of K<sup>+</sup>-SCISEs corresponding to impedance absolute value <i>Z</i> was recorded constantly as KCl aqueous solution diluted with water. The membrane resistance <i>Z</i> increases as the electrolyte concentration decreases. Under identical dilution steps, the linear slope of the logarithmic membrane resistance log<i>Z</i> <i>vs</i> log<i>a</i><sub>K+</sub> for K<sup>+</sup>-SCISEs with the spin-coated membrane is larger than that of the electrode covered with the drop-cast membrane. As the K<sup>+</sup>-SCISE resistance with the spin-coated membrane was reduced to hundreds of Ω, the log<i>Z</i> of K<sup>+</sup>-SCISEs is linearly proportional to log<i>a</i><sub>K+</sub> in the range of −1 to −3.4, providing a possibility of utilizing membrane resistance <i>Z</i> as a calibration-free analytical signal for SCISEs. The effective capacitance <i>C</i><sub>ec</sub> of K<sup>+</sup>-SCISEs with the spin-coated membrane was performed in 0.1 M KCl applied with single frequency ranging from 1 MHz and decreases by a factor of 10 to 10 mHz. The obtained <i>C</i><sub>ec</sub> of K<sup>+</sup>-SCISEs with the spin-coated membrane is linearly proportional to log<i>f</i>in the range of 1 MHz to 10 Hz with a slope of <i>ca.</i> −0.97, while at a low frequency ranging from 1 Hz to 10 mHz, the linear slope of log<i>C</i><sub>ec</sub> <i>vs</i> log<i>f</i> is suppressed, where Warburg diffusion takes effect. Furthermore, the membrane resistance <i>Z</i> is independent of applied high frequencies, and the effective capacitance <i>C</i><sub>ec</sub> is independent of the excitation amplitude.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 2","pages":"216–225 216–225"},"PeriodicalIF":4.6,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00093","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143832990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular Stress Response of Mitochondria during Electrostimulation Evoking Stem Cell Differentiation Revealed by Fluorescence Imaging Combined with SERS Spectra","authors":"Jiafeng Wang, Xiaozhang Qu, Zhimin Zhang, Xiuping Meng and Guohua Qi*, ","doi":"10.1021/acsmeasuresciau.5c0000510.1021/acsmeasuresciau.5c00005","DOIUrl":"https://doi.org/10.1021/acsmeasuresciau.5c00005https://doi.org/10.1021/acsmeasuresciau.5c00005","url":null,"abstract":"<p >Stem cells are a class of multipotential cells with the capability of self-replication, which can differentiate into multiple functional cells under extra stimulus. The differentiation of stem cells has important implications for tissue regeneration. Therefore, controllable regulation of dental pulp stem cell (DPSC) behaviors is critical for repairment and regeneration of damaged teeth tissues. Rapid promotion of DPSCs, directed differentiation, and revealing molecular events within the organelle level during the cell differentiation process are in great demand for regeneration of teeth, which remains a great challenge. Herein, we developed a highly effective and uncomplicated stimulation platform to promote the DPSCs for odontogenic differentiation based on impulse electrical stimulation and revealed the molecular stress response of mitochondria during cell differentiation based on fluorescence imaging combined with surface-enhanced Raman spectroscopy (SERS). Our approach can greatly shorten the DPSC differentiation time from usually more than 20 days to only about 3 days under 0.8 V for 5 min every day than drug stimulation. Notably, the glycogen and adenosine triphosphate levels within mitochondria were apparently elevated, which is conducive to improving the progression of cell differentiation. Simultaneously, the expression of mitofusin1 and mitofusin2 within mitochondria was significantly down-regulated during the differentiation process. Mechanistically, the molecular insights into mitochondria within DPSCs were clearly revealed through SERS spectra. It demonstrated that the expression of phenylalanine was significantly reduced, whereas the contents of tryptophan within mitochondria were promoted during the cell differentiation process. This study provides a comprehensive and clinically feasible strategy for the rapid promotion of DPSCs-directed differentiation and reveals the molecular dynamic changes within mitochondria, which broadens the biomedical cognition of electrical stimulation for dental pulp stem cell differentiation and provides a potential application for teeth tissue regeneration in the future.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"5 3","pages":"294–303 294–303"},"PeriodicalIF":4.6,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.5c00005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144305584","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}