抗体- aunps纳米偶联修饰的即用型微波传感器,用于高灵敏度和选择性检测SARS-CoV-2病毒

IF 4.6 Q1 CHEMISTRY, ANALYTICAL
Jin Wang, Weijia Cui, Carolyn L. Ren and Emmanuel A. Ho*, 
{"title":"抗体- aunps纳米偶联修饰的即用型微波传感器,用于高灵敏度和选择性检测SARS-CoV-2病毒","authors":"Jin Wang,&nbsp;Weijia Cui,&nbsp;Carolyn L. Ren and Emmanuel A. Ho*,&nbsp;","doi":"10.1021/acsmeasuresciau.4c0003210.1021/acsmeasuresciau.4c00032","DOIUrl":null,"url":null,"abstract":"<p >The COVID-19 outbreak has led to notable developments in point-of-care (POC) diagnostic devices, as they can be valuable resources in identifying and managing the spread of the pandemic. Currently, the majority of techniques demand advanced laboratory equipment and professionals to execute precise, efficient, accurate, and sensitive testing. In this work, we report a new method to significantly enhance the sensitivity of microwave sensing of the SARS-CoV-2 virus by functionalizing the sensor surface using anti-SARS-CoV-2 spike antibody-gold nanoparticle (AuNPs) conjugates. AuNPs were surface-functionalized with the antispike antibody by EDC/NHS chemistry via PEG as a linker to form the conjugate (Ab-PEG-AuNPs). The Ab-PEG-AuNPs nanoconjugate was then coated onto the sensor through APTES and used for selectively capturing the spike protein on the SARS-CoV-2 virus. The sensing performance of the modified sensor was demonstrated via both experimental measurements and numerical simulations. Our sensor exhibited high sensitivity, achieving a limit of detection of 1,000 copies/mL of the SARS-CoV-2 virus within a 60 min time frame while requiring a minimal sample volume of 100 μL. The sensor exhibits outstanding specificity in distinguishing SARS-CoV-2 from other viruses, including influenza A and B, SARS-CoV-1, and MERS-CoV. Overall, this sensor provides a sensitive and label-free alternative for COVID-19 POC diagnosis.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":"4 6","pages":"651–658 651–658"},"PeriodicalIF":4.6000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00032","citationCount":"0","resultStr":"{\"title\":\"Ready-To-Use Microwave Sensor Modified by Antibody-AuNPs Nanoconjugate for Highly Sensitive and Selective Detection of the SARS-CoV-2 Virus\",\"authors\":\"Jin Wang,&nbsp;Weijia Cui,&nbsp;Carolyn L. Ren and Emmanuel A. Ho*,&nbsp;\",\"doi\":\"10.1021/acsmeasuresciau.4c0003210.1021/acsmeasuresciau.4c00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The COVID-19 outbreak has led to notable developments in point-of-care (POC) diagnostic devices, as they can be valuable resources in identifying and managing the spread of the pandemic. Currently, the majority of techniques demand advanced laboratory equipment and professionals to execute precise, efficient, accurate, and sensitive testing. In this work, we report a new method to significantly enhance the sensitivity of microwave sensing of the SARS-CoV-2 virus by functionalizing the sensor surface using anti-SARS-CoV-2 spike antibody-gold nanoparticle (AuNPs) conjugates. AuNPs were surface-functionalized with the antispike antibody by EDC/NHS chemistry via PEG as a linker to form the conjugate (Ab-PEG-AuNPs). The Ab-PEG-AuNPs nanoconjugate was then coated onto the sensor through APTES and used for selectively capturing the spike protein on the SARS-CoV-2 virus. The sensing performance of the modified sensor was demonstrated via both experimental measurements and numerical simulations. Our sensor exhibited high sensitivity, achieving a limit of detection of 1,000 copies/mL of the SARS-CoV-2 virus within a 60 min time frame while requiring a minimal sample volume of 100 μL. The sensor exhibits outstanding specificity in distinguishing SARS-CoV-2 from other viruses, including influenza A and B, SARS-CoV-1, and MERS-CoV. Overall, this sensor provides a sensitive and label-free alternative for COVID-19 POC diagnosis.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":\"4 6\",\"pages\":\"651–658 651–658\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.4c00032\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.4c00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

2019冠状病毒病的爆发导致了即时诊断设备的显著发展,因为它们可以成为识别和管理大流行传播的宝贵资源。目前,大多数技术需要先进的实验室设备和专业人员来执行精确,高效,准确和敏感的测试。在这项工作中,我们报告了一种新的方法,通过使用抗SARS-CoV-2刺突抗体-金纳米颗粒(AuNPs)偶联物对传感器表面进行功能化,显著提高了对SARS-CoV-2病毒微波传感的灵敏度。通过EDC/NHS化学,通过PEG作为连接物,将AuNPs与抗刺突抗体表面功能化,形成偶联物(Ab-PEG-AuNPs)。然后通过APTES将Ab-PEG-AuNPs纳米偶联物涂覆在传感器上,并用于选择性捕获SARS-CoV-2病毒上的刺突蛋白。通过实验测量和数值模拟验证了改进后传感器的传感性能。我们的传感器具有很高的灵敏度,在最小样本量为100 μL的情况下,在60分钟的时间内检测到1000拷贝/mL的SARS-CoV-2病毒。该传感器在区分SARS-CoV-2与其他病毒(包括甲型和乙型流感病毒、SARS-CoV-1和中东呼吸综合征- cov)方面表现出出色的特异性。总体而言,该传感器为COVID-19 POC诊断提供了一种敏感且无标签的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ready-To-Use Microwave Sensor Modified by Antibody-AuNPs Nanoconjugate for Highly Sensitive and Selective Detection of the SARS-CoV-2 Virus

The COVID-19 outbreak has led to notable developments in point-of-care (POC) diagnostic devices, as they can be valuable resources in identifying and managing the spread of the pandemic. Currently, the majority of techniques demand advanced laboratory equipment and professionals to execute precise, efficient, accurate, and sensitive testing. In this work, we report a new method to significantly enhance the sensitivity of microwave sensing of the SARS-CoV-2 virus by functionalizing the sensor surface using anti-SARS-CoV-2 spike antibody-gold nanoparticle (AuNPs) conjugates. AuNPs were surface-functionalized with the antispike antibody by EDC/NHS chemistry via PEG as a linker to form the conjugate (Ab-PEG-AuNPs). The Ab-PEG-AuNPs nanoconjugate was then coated onto the sensor through APTES and used for selectively capturing the spike protein on the SARS-CoV-2 virus. The sensing performance of the modified sensor was demonstrated via both experimental measurements and numerical simulations. Our sensor exhibited high sensitivity, achieving a limit of detection of 1,000 copies/mL of the SARS-CoV-2 virus within a 60 min time frame while requiring a minimal sample volume of 100 μL. The sensor exhibits outstanding specificity in distinguishing SARS-CoV-2 from other viruses, including influenza A and B, SARS-CoV-1, and MERS-CoV. Overall, this sensor provides a sensitive and label-free alternative for COVID-19 POC diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Measurement Science Au
ACS Measurement Science Au 化学计量学-
CiteScore
5.20
自引率
0.00%
发文量
0
期刊介绍: ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信