ACS Organic & Inorganic AuPub Date : 2024-08-29DOI: 10.1021/acsorginorgau.4c0005210.1021/acsorginorgau.4c00052
Maisa Faour, Karam Yassin and Dario R. Dekel*,
{"title":"Anion-Exchange Membrane Oxygen Separator","authors":"Maisa Faour, Karam Yassin and Dario R. Dekel*, ","doi":"10.1021/acsorginorgau.4c0005210.1021/acsorginorgau.4c00052","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00052https://doi.org/10.1021/acsorginorgau.4c00052","url":null,"abstract":"<p >Anion-exchange membranes (AEMs), known for enabling the high conductivity of hydroxide anions through dense polymeric structures, are pivotal components in fuel cells, electrolyzers, and other important electrochemical systems. This paper unveils an unprecedented utilization of AEMs in an electrochemical oxygen separation process, a new technology able to generate enriched oxygen from an O<sub>2</sub>/N<sub>2</sub> mixture using a small voltage input. We demonstrate a first-of-its-kind AEM-based electrochemical device that operates under mild conditions, is free of liquid electrolytes or sweep gases, and produces oxygen of over 96% purity. Additionally, we develop and apply a one-dimensional time-dependent and isothermal model, which accurately captures the unique operational dynamics of our device, demonstrates good agreement with the experimental data, and allows us to explore the device’s potential capabilities. This novel technology has far-reaching applications in many industrial processes, medical oxygen therapy, and other diverse fields while reducing operational complexity and environmental impact, thereby paving the way for sustainable on-site oxygen generation.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 5","pages":"498–503 498–503"},"PeriodicalIF":3.3,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Corina Stoian, Fawaz Al Hussein, Wesley R. Browne, Emanuel Hupf, Jens Beckmann
{"title":"Electronic Coupling in Triferrocenylpnictogens","authors":"Corina Stoian, Fawaz Al Hussein, Wesley R. Browne, Emanuel Hupf, Jens Beckmann","doi":"10.1021/acsorginorgau.4c00034","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00034","url":null,"abstract":"From a fundamental perspective, studies of novel mixed-valent complexes containing ferrocenyl units are motivated by the prospect of improving and extending electron transfer models and theories. Here, the series of triferrocenylpnictogens Fc<sub>3</sub>E was extended to the heavier analogues (E = As, Sb, and Bi), and the influence of the bridging atom was investigated with Fc<sub>3</sub>P as a reference. Electrochemical studies elucidate the effect of electrostatic contribution on the large redox splitting (Δ<i>E</i><sub>1</sub>) exhibited by the compounds and solvent stabilization in the case of Fc<sub>3</sub>As. Structural characterization of the triferrocenylpnictogens combined with spectroelectrochemical studies indicates weak electronic couplings in the related cations [Fc<sub>3</sub>E]<sup>+</sup>, suggesting a through-space mechanism.","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142219289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Mechanochemistry for Organic and Inorganic Synthesis","authors":"Javier F. Reynes, Felix Leon, Felipe García","doi":"10.1021/acsorginorgau.4c00001","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00001","url":null,"abstract":"In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141947619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Organic & Inorganic AuPub Date : 2024-08-07DOI: 10.1021/acsorginorgau.4c0000110.1021/acsorginorgau.4c00001
Javier F. Reynes, Felix Leon and Felipe García*,
{"title":"Mechanochemistry for Organic and Inorganic Synthesis","authors":"Javier F. Reynes, Felix Leon and Felipe García*, ","doi":"10.1021/acsorginorgau.4c0000110.1021/acsorginorgau.4c00001","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00001https://doi.org/10.1021/acsorginorgau.4c00001","url":null,"abstract":"<p >In recent years, mechanochemistry has become an innovative and sustainable alternative to traditional solvent-based synthesis. Mechanochemistry rapidly expanded across a wide range of chemistry fields, including diverse organic compounds and active pharmaceutical ingredients, coordination compounds, organometallic complexes, main group frameworks, and technologically relevant materials. This Review aims to highlight recent advancements and accomplishments in mechanochemistry, underscoring its potential as a viable and eco-friendly alternative to conventional solution-based methods in the field of synthetic chemistry.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 5","pages":"432–470 432–470"},"PeriodicalIF":3.3,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00001","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142403084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Paloma Mingueza-Verdejo, Susi Hervàs-Arnandis, Judit Oliver-Meseguer, Antonio Leyva-Pérez
{"title":"Additive-Free Commercial Alumina Catalyzes the Halogen Exchange Reaction of Long Alkyl Halides in Batch and in Flow Processes","authors":"Paloma Mingueza-Verdejo, Susi Hervàs-Arnandis, Judit Oliver-Meseguer, Antonio Leyva-Pérez","doi":"10.1021/acsorginorgau.4c00039","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00039","url":null,"abstract":"The synthesis of alkyl halides can be performed by simply halide exchange reactions between two different alkyl halides, catalyzed by aluminosilicates. Here, we show that commercially available alumina shows a superior catalytic activity for the halogen exchange reaction between long alkyl halides (more than 6 carbons), including fluorides, in either batch or flow modes. The catalytic activity of the solid alumina is modulated by alkaline countercations on the surface, and sodium-supported alumina shows the optimal performance for the iodo-bromo and iodo-fluoro exchange under inflow reaction conditions, after >24 h reaction time, without any external additive.","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"116 5 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141884143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Organic & Inorganic AuPub Date : 2024-08-02DOI: 10.1021/acsorginorgau.4c0003910.1021/acsorginorgau.4c00039
Paloma Mingueza-Verdejo, Susi Hervàs-Arnandis, Judit Oliver-Meseguer* and Antonio Leyva-Pérez*,
{"title":"Additive-Free Commercial Alumina Catalyzes the Halogen Exchange Reaction of Long Alkyl Halides in Batch and in Flow Processes","authors":"Paloma Mingueza-Verdejo, Susi Hervàs-Arnandis, Judit Oliver-Meseguer* and Antonio Leyva-Pérez*, ","doi":"10.1021/acsorginorgau.4c0003910.1021/acsorginorgau.4c00039","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00039https://doi.org/10.1021/acsorginorgau.4c00039","url":null,"abstract":"<p >The synthesis of alkyl halides can be performed by simply halide exchange reactions between two different alkyl halides, catalyzed by aluminosilicates. Here, we show that commercially available alumina shows a superior catalytic activity for the halogen exchange reaction between long alkyl halides (more than 6 carbons), including fluorides, in either batch or flow modes. The catalytic activity of the solid alumina is modulated by alkaline countercations on the surface, and sodium-supported alumina shows the optimal performance for the iodo-bromo and iodo-fluoro exchange under inflow reaction conditions, after >24 h reaction time, without any external additive.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 6","pages":"640–648 640–648"},"PeriodicalIF":3.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142760849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Organic & Inorganic AuPub Date : 2024-07-17DOI: 10.1021/acsorginorgau.4c0003110.1021/acsorginorgau.4c00031
Jenny Y. Yang, and , Ryan P. King*,
{"title":"Diversification of Bipyridines and Azaheterocycles via Nucleophilic Displacement of Trimethylammoniums","authors":"Jenny Y. Yang, and , Ryan P. King*, ","doi":"10.1021/acsorginorgau.4c0003110.1021/acsorginorgau.4c00031","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00031https://doi.org/10.1021/acsorginorgau.4c00031","url":null,"abstract":"<p >Bipyridines and azaarenes are an important class of ligands that impart unique and tunable properties to transition metal complexes and catalysts. While some derivatives are commercially available, noncommercial analogues are often challenging to prepare and purify. Herein, we report a general nucleophilic aromatic substitution reaction that converts cationic trimethylaminated bipyridines into a series of functionalized bipyridines. Our method showcases a series of C–O, C–S, and C–F bond-forming reactions as well as a selective monodemethylation that converts the electron-deficient trimethylammonium to an electron-rich dimethylamine. The approach was further applied to diversification of pharmaceuticals and natural products and was applied to the total synthesis of Graveolinine and the preparation of Graveolinine derivatives.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 5","pages":"526–533 526–533"},"PeriodicalIF":3.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142403030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Diversification of Bipyridines and Azaheterocycles via Nucleophilic Displacement of Trimethylammoniums","authors":"Jenny Y. Yang, Ryan P. King","doi":"10.1021/acsorginorgau.4c00031","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00031","url":null,"abstract":"Bipyridines and azaarenes are an important class of ligands that impart unique and tunable properties to transition metal complexes and catalysts. While some derivatives are commercially available, noncommercial analogues are often challenging to prepare and purify. Herein, we report a general nucleophilic aromatic substitution reaction that converts cationic trimethylaminated bipyridines into a series of functionalized bipyridines. Our method showcases a series of C–O, C–S, and C–F bond-forming reactions as well as a selective monodemethylation that converts the electron-deficient trimethylammonium to an electron-rich dimethylamine. The approach was further applied to diversification of pharmaceuticals and natural products and was applied to the total synthesis of Graveolinine and the preparation of Graveolinine derivatives.","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"71 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141719749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Organic & Inorganic AuPub Date : 2024-07-15DOI: 10.1021/acsorginorgau.4c0002110.1021/acsorginorgau.4c00021
Masahito Murai, Masanori Ono, Yuya Tanaka and Munetaka Akita*,
{"title":"Controlling Redox and Wirelike Charge-Delocalization Properties of Dinuclear Mixed-Valence Complexes with MCp*(dppe) (M = Fe, Ru) Termini Bridged by Metalloporphyrin Linkers","authors":"Masahito Murai, Masanori Ono, Yuya Tanaka and Munetaka Akita*, ","doi":"10.1021/acsorginorgau.4c0002110.1021/acsorginorgau.4c00021","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00021https://doi.org/10.1021/acsorginorgau.4c00021","url":null,"abstract":"<p >Four dinuclear organometallic molecular wire complexes with diethynylmetalloporphyrin linkers <b>1</b><sup><b>MM’</b></sup>, [5,15-bis{MCp*(dppe)ethynyl}-10,20-diarylporphinato]M’ (Cp* = η<sup>5</sup>-C<sub>5</sub>Me<sub>5</sub>; dppe = 1,2-bis(diphenylphosphino)ethane; M/M’ = Fe/Zn (<b>1</b><sup><b>FeZn</b></sup>), Ru/Zn (<b>1</b><sup><b>RuZn</b></sup>), Fe/Ni (<b>1</b><sup><b>FeNi</b></sup>), Ru/Ni (<b>1</b><sup><b>RuNi</b></sup>); aryl = 3,5-di-<i>tert</i>-butylphenyl), are synthesized and characterized by NMR, CV, UV–vis-NIR, and ESI-TOF mass spectrometry techniques. Electrochemical investigations combined with electronic absorption spectroscopic studies reveal strong interactions among the electron-donating, redox-active MCp*(dppe) termini and the metalloporphyrin moieties. The monocationic species of the four complexes obtained by chemical oxidation have been characterized as mixed-valence Class II/III or Class III compounds according to the Robin-Day classification despite the long molecular dimension (>1.5 nm), as demonstrated by their intense intervalence charge transfer bands (IVCT) in the near IR region. DFT calculations indicate large spin densities on the metalloporphyrin moieties. Furthermore, the wirelike performance can be finely tuned by coordination of appropriate nitrogen donors to the axial sites of the metalloporphyrin.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 5","pages":"504–516 504–516"},"PeriodicalIF":3.3,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142403029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Organic & Inorganic AuPub Date : 2024-06-21DOI: 10.1021/acsorginorgau.4c0002510.1021/acsorginorgau.4c00025
Zhining Xu, and , Ervin Kovács*,
{"title":"Beyond Traditional Synthesis: Electrochemical Approaches to Amine Oxidation for Nitriles and Imines","authors":"Zhining Xu, and , Ervin Kovács*, ","doi":"10.1021/acsorginorgau.4c0002510.1021/acsorginorgau.4c00025","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00025https://doi.org/10.1021/acsorginorgau.4c00025","url":null,"abstract":"<p >The electrochemical oxidation of amines to nitriles and imines represents a critical frontier in organic electrochemistry, offering a sustainable pathway to these valuable compounds. Nitriles and amines are pivotal in various industrial applications, including pharmaceuticals, agrochemicals, and materials science. This review encapsulates the recent advancements in the electrooxidation process, emphasizing mechanistic understanding, electrode material innovations, optimization of reaction conditions, and exploration of solvent and electrolyte systems. Additionally, the review addresses the operational parameters that significantly affect the electrooxidation process, such as current density, temperature, and electrode surface, offering insights into their optimization for enhanced performance. By providing a comprehensive view of the current state and prospects of amine electrooxidation to nitriles and imines, this review aims to inspire further development, innovation, and research in this promising area of green chemistry.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 5","pages":"471–484 471–484"},"PeriodicalIF":3.3,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142402775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}