ACS Organic & Inorganic Au最新文献

筛选
英文 中文
Organophotoredox 1,6-Addition of 3,4-Dihydroquinoxalin-2-ones to para-Quinone Methides Using Visible Light 利用可见光将3,4-二氢喹啉-2-酮加成到对醌类化合物中
ACS Organic & Inorganic Au Pub Date : 2023-01-20 DOI: 10.1021/acsorginorgau.2c00064
Jaume Rostoll-Berenguer, Víctor García-García, Gonzalo Blay, José R. Pedro* and Carlos Vila*, 
{"title":"Organophotoredox 1,6-Addition of 3,4-Dihydroquinoxalin-2-ones to para-Quinone Methides Using Visible Light","authors":"Jaume Rostoll-Berenguer,&nbsp;Víctor García-García,&nbsp;Gonzalo Blay,&nbsp;José R. Pedro* and Carlos Vila*,&nbsp;","doi":"10.1021/acsorginorgau.2c00064","DOIUrl":"https://doi.org/10.1021/acsorginorgau.2c00064","url":null,"abstract":"<p >An organophotoredox 1,6-radical addition of 3,4-dihidroquinoxalin-2-ones to <i>para</i>-quinone methides catalyzed by Fukuzumi’s photocatalyst is described under the irradiation of a HP Single LED (455 nm). The corresponding 1,1-diaryl compounds bearing a dihydroquinoxalin-2-one moiety (20 examples) are obtained with good to excellent yields under mild reaction conditions. Several experiments have been carried out in order to propose a reaction mechanism.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.2c00064","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49767843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conformational Selection of a Tryptophan Side Chain Drives the Generalized Increase in Activity of PET Hydrolases through a Ser/Ile Double Mutation 色氨酸侧链的构象选择通过Ser/Ile双突变驱动PET水解酶活性的普遍提高
ACS Organic & Inorganic Au Pub Date : 2023-01-09 DOI: 10.1021/acsorginorgau.2c00054
Alessandro Crnjar, Aransa Griñen, Shina C. L. Kamerlin* and César A. Ramírez-Sarmiento*, 
{"title":"Conformational Selection of a Tryptophan Side Chain Drives the Generalized Increase in Activity of PET Hydrolases through a Ser/Ile Double Mutation","authors":"Alessandro Crnjar,&nbsp;Aransa Griñen,&nbsp;Shina C. L. Kamerlin* and César A. Ramírez-Sarmiento*,&nbsp;","doi":"10.1021/acsorginorgau.2c00054","DOIUrl":"10.1021/acsorginorgau.2c00054","url":null,"abstract":"<p >Poly(ethylene terephthalate) (PET) is the most common polyester plastic in the packaging industry and a major source of environmental pollution due to its single use. Several enzymes, termed PET hydrolases, have been found to hydrolyze this polymer at different temperatures, with the enzyme from <i>Ideonella sakaiensis</i> (<i>Is</i>PETase) having optimal catalytic activity at 30–35 °C. Crystal structures of <i>Is</i>PETase have revealed that the side chain of a conserved tryptophan residue within an active site loop (W185) shifts between three conformations to enable substrate binding and product release. This is facilitated by two residues unique to <i>Is</i>PETase, S214 and I218. When these residues are inserted into other PET hydrolases in place of the otherwise strictly conserved histidine and phenylalanine residues found at their respective positions, they enhance activity and decrease <i>T</i><sub>opt</sub>. Herein, we combine molecular dynamics and well-tempered metadynamics simulations to investigate dynamic changes of the S214/I218 and H214/F218 variants of <i>Is</i>PETase, as well as three other mesophilic and thermophilic PET hydrolases, at their respective temperature and pH optima. Our simulations show that the S214/I218 insertion both increases the flexibility of active site loop regions harboring key catalytic residues and the conserved tryptophan and expands the conformational plasticity of this tryptophan side chain, enabling the conformational transitions that allow for substrate binding and product release in <i>Is</i>PETase. The observed catalytic enhancement caused by this substitution in other PET hydrolases appears to be due to conformational selection, by capturing the conformational ensemble observed in <i>Is</i>PETase.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.2c00054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9651959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Copper(I)-Catalyzed Regio- and Stereoselective Silaboration of Terminal Allenes 铜(I)催化末端等位基因的区域和立体选择性硅硼化
ACS Organic & Inorganic Au Pub Date : 2023-01-04 DOI: 10.1021/acsorginorgau.2c00057
Yu Ozawa, Hisao Koriyama, Yuma Shiratori and Hajime Ito*, 
{"title":"Copper(I)-Catalyzed Regio- and Stereoselective Silaboration of Terminal Allenes","authors":"Yu Ozawa,&nbsp;Hisao Koriyama,&nbsp;Yuma Shiratori and Hajime Ito*,&nbsp;","doi":"10.1021/acsorginorgau.2c00057","DOIUrl":"10.1021/acsorginorgau.2c00057","url":null,"abstract":"<p >Organic compounds bearing both silyl and boryl groups are important building blocks in organic synthesis because of the adequate reactivity of the silyl and boryl groups and high stereospecificity in their derivatization reactions. The difference in reactivity between the silyl and boryl groups enables stepwise derivatization of these groups to afford complex molecules. Here, we report the copper(I)-catalyzed silaboration of terminal allenes to produce multisubstituted allylic boronates embedded with an alkenyl silane structure. The reaction can proceed with a variety of allenes and silylboranes. Furthermore, the silyl and boryl groups were successfully converted into other functional groups, while retaining the stereochemistry of the alkene moiety.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/55/23/gg2c00057.PMC10080722.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9651960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applications of Vanadium, Niobium, and Tantalum Complexes in Organic and Inorganic Synthesis 钒、铌和钽配合物在有机和无机合成中的应用
ACS Organic & Inorganic Au Pub Date : 2022-12-30 DOI: 10.1021/acsorginorgau.2c00056
Xinru Xu, Hong Wang*, Choon-Hong Tan and Xinyi Ye*, 
{"title":"Applications of Vanadium, Niobium, and Tantalum Complexes in Organic and Inorganic Synthesis","authors":"Xinru Xu,&nbsp;Hong Wang*,&nbsp;Choon-Hong Tan and Xinyi Ye*,&nbsp;","doi":"10.1021/acsorginorgau.2c00056","DOIUrl":"10.1021/acsorginorgau.2c00056","url":null,"abstract":"<p >Organometallic catalysis is a powerful strategy in chemical synthesis, especially with the cheap and low toxic metals based on green chemistry principle. Thus, the selection of the metal is particularly important to plan relevant and applicable processes. The group VB metals have been the subject of exciting and significant advances in both organic and inorganic synthesis. In this Review, we have summarized some reports from recent decades, which are about the development of group VB metals utilized in various types of reactions, such as oxidation, reduction, alkylation, dealkylation, polymerization, aromatization, protein synthesis, and practical water splitting.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/27/4f/gg2c00056.PMC10080730.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9637425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Advances in Organic and Inorganic Photoredox Catalysis 有机和无机光氧化还原催化研究进展
ACS Organic & Inorganic Au Pub Date : 2022-12-08 DOI: 10.1021/acsorginorgau.2c00062
Franc Meyer, P. Shiv Halasyamani and Géraldine Masson*, 
{"title":"Advances in Organic and Inorganic Photoredox Catalysis","authors":"Franc Meyer,&nbsp;P. Shiv Halasyamani and Géraldine Masson*,&nbsp;","doi":"10.1021/acsorginorgau.2c00062","DOIUrl":"10.1021/acsorginorgau.2c00062","url":null,"abstract":"V light is perceived as an ideal source of energy to activate organic and inorganic compounds and mediate photophysical and photochemical transformations. In the early 20th century, Ciamician reported his vision to exploit the renewable energy potential of visible-light irradiation as a strategy for sustainable chemical development. However, the lack of color for most organic and inorganic molecules and their transparency to visible light has impeded progress toward this goal. Although the UV irradiation of organic and/or inorganic compounds has allowed the development of efficient organic and inorganic photochemical reactions, this approach suffers from poor functional group tolerance and harnesses less than 10% of the solar power potential. Over the past 20 years, a great deal of research has been devoted to triggering chemical transformations with abundant and chemically inert visible light. Inorganic materials such as TiO2 were initially reported to be potent photocatalysts, and in the 1970s, Fujishima and Honda reported an important contribution on solar watersplitting and carbon dioxide reduction, which stimulated the field of research on semiconductor photocatalysts. During the same period, the selected activation of small organic molecules by visible-light-absorbing organometallic photocatalysts was also demonstrated by several researchers, thereby establishing the foundations for visible-light homogeneous photocatalysis. However, while research on semiconductor photocatalysts progressively increased, the concept of photocatalysis in the field of organic chemistry remained undiscussed until 2008/ 2009, when MacMillan, Yoon, and Stephenson demonstrated significant advances, illustrating its significant potential for the research community. Since then, photoredox catalysis has been extensively developed in organic and inorganic chemistry, and even in other fields of science. We are pleased to launch this issue of ACS Organic & Inorganic Chemistry Au, which includes selected Reviews and Articles covering key topics and advances in organic and inorganic photoredox catalysis. Several Articles and Reviews in this issue are dedicated to the preparation of new photocatalysts. Chiral-at-metal Lewis acid catalysts, in which the chiral information comes from the metal center, have been shown to be useful in a wide range of enantioselective metal-catalyzed reactions, as discussed in the in-depth and insightful Review from Biplab Maji et al. Chiralat-metal photocatalysts have been successfully employed in several important enantioselective transformations, and their huge contribution to the recent progress of asymmetric photoredox catalysis is presented. The Review also provides a critical analysis of the topic and outlines future directions for the field. This issue contains reports on novel metal or organophotocatalysts and their applications (mainly in organic chemistry). Designing photoredox catalysts that absorb in the red-light region has recent","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d5/d6/gg2c00062.PMC9954384.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10813910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photochemical [2 + 2] Cycloaddition of Alkenes with Maleimides: Highlighting the Differences between N-Alkyl vs N-Aryl Maleimides 烯与马来酰亚胺的光化学[2 + 2]环加成:n -烷基与n -芳基马来酰亚胺的区别
ACS Organic & Inorganic Au Pub Date : 2022-12-08 DOI: 10.1021/acsorginorgau.2c00053
Elpida Skolia,  and , Christoforos G. Kokotos*, 
{"title":"Photochemical [2 + 2] Cycloaddition of Alkenes with Maleimides: Highlighting the Differences between N-Alkyl vs N-Aryl Maleimides","authors":"Elpida Skolia,&nbsp; and ,&nbsp;Christoforos G. Kokotos*,&nbsp;","doi":"10.1021/acsorginorgau.2c00053","DOIUrl":"https://doi.org/10.1021/acsorginorgau.2c00053","url":null,"abstract":"<p >Throughout the last 15 years, there has been increased research interest in the use of light promoting organic transformations. [2 + 2] Cycloadditions are usually performed photochemically; however, literature precedent on the reaction between olefins and maleimides is limited to a handful of literature examples, focusing mainly on <i>N</i>-aliphatic maleimides or using metal catalysts for visible-light driven reactions of <i>N</i>-aromatic maleimides. Herein, we identify the differences in reactivity between <i>N</i>-alkyl and <i>N</i>-aryl maleimides. For our optimized protocols, in the case of <i>N</i>-alkyl maleimides, the reaction with alkenes proceeds under 370 nm irradiation in the absence of an external photocatalyst, leading to products in high yields. In the case of <i>N</i>-aryl maleimides, the reaction with olefins requires thioxanthone as the photosensitizer under 440 nm irradiation.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.2c00053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49768243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Finding Fluidity 发现流动性
ACS Organic & Inorganic Au Pub Date : 2022-12-07 DOI: 10.1021/acsorginorgau.2c00060
Lily Kenchington-Evans*, 
{"title":"Finding Fluidity","authors":"Lily Kenchington-Evans*,&nbsp;","doi":"10.1021/acsorginorgau.2c00060","DOIUrl":"10.1021/acsorginorgau.2c00060","url":null,"abstract":"When I created the initial draft of this artwork�which Susan Bin has brought to life�I reflected on why I love the chemical and biological sciences, my own evolution while studying science, and how to represent the nonbinary/ genderfluid experience. I did not want to be a scientist growing up, but the more involved I became with academia and science outreach, the more compelled I felt to stay and fight for better representation. I initially came from a performing arts background but fell in love with science while studying biology in high school. I was fascinated by the “central dogma of biology” and the beauty of the double helix. I like to say I left the arts for the scientific stage to showcase STEM (Science, Technology, Engineering, Mathematics) through science communication and education. This piece is dedicated to LGBTQ+ (Lesbian, Gay, Bisexual, Transgender, Queer) scientists.","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/4b/gg2c00060.PMC9954320.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10862542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reactivity and Structure of a Bis-phenolate Niobium NHC Complex 双酚酸铌NHC配合物的反应性和结构
ACS Organic & Inorganic Au Pub Date : 2022-12-05 DOI: 10.1021/acsorginorgau.2c00028
Florian R. Neururer, Konstantin Huter, Michael Seidl and Stephan Hohloch*, 
{"title":"Reactivity and Structure of a Bis-phenolate Niobium NHC Complex","authors":"Florian R. Neururer,&nbsp;Konstantin Huter,&nbsp;Michael Seidl and Stephan Hohloch*,&nbsp;","doi":"10.1021/acsorginorgau.2c00028","DOIUrl":"10.1021/acsorginorgau.2c00028","url":null,"abstract":"<p >We report the facile synthesis of a rare niobium(V) imido NHC complex with a dianionic OCO-pincer benzimidazolylidene ligand (<b>L</b><sup><b>1</b></sup>) with the general formula <b>[Nb<b>L</b><sup><b>1</b></sup>(N</b><sup><i><b>t</b></i></sup><b>Bu)PyCl] 1-Py</b>. We achieved this by <i>in situ</i> deprotonation of the corresponding azolium salt <b>[H</b><sub><b>3</b></sub><b>L</b><sup><b>1</b></sup><b>][Cl]</b> and subsequent reaction with <b>[Nb(N</b><sup><i><b>t</b></i></sup><b>Bu)Py</b><sub><b>2</b></sub><b>Cl</b><sub><b>3</b></sub><b>]</b>. The pyridine ligand in <b>1-Py</b> can be removed by the addition of B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> as a strong Lewis acid leading to the formation of the pyridine-free complex <b>1</b>. In contrast to similar vanadium(V) complexes, complex <b>1-Py</b> was found to be a good precursor for various salt metathesis reactions, yielding a series of chalcogenido and pnictogenido complexes with the general formula <b>[</b><b>NbL<sup><b>1</b></sup>(N</b><sup><i><b>t</b></i></sup><b>Bu)Py(EMes)]</b> (E = O (<b>2</b>), S (<b>3</b>), NH (<b>4</b>), and PH (<b>5</b>)). Furthermore, complex <b>1-Py</b> can be converted to alkyl complex (<b>6</b>) with 1 equiv of neosilyl lithium as a transmetallation agent. Addition of a second equivalent yields a new trianionic supporting ligand on the niobium center (<b>7</b>) in which the benzimidazolylidene ligand is alkylated at the former carbene carbon atom. The latter is an interesting chemically “noninnocent” feature of the benzimidazolylidene ligand potentially useful in catalysis and atom transfer reactions. Addition of mesityl lithium to <b>1-Py</b> gives the pyridine-free aryl complex <b>8</b>, which is stable toward “overarylation” by an additional equivalent of mesityl lithium. Electrochemical investigation revealed that complexes <b>1-Py</b> and <b>1</b> are inert toward reduction in dichloromethane but show two irreversible reduction processes in tetrahydrofuran as a solvent. However, using standard reduction agents, <i>e.g.</i>, KC<sub>8</sub>, K-mirror, and Na/Napht, no reduced products could be isolated. All complexes have been thoroughly studied by various techniques, including <sup>1</sup>H-, <sup>13</sup>C{<sup>1</sup>H}-, and <sup>1</sup>H-<sup>15</sup>N HMBC NMR spectroscopy, IR spectroscopy, and X-ray diffraction analysis.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.2c00028","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10725193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical Photoelectron Spectroscopy of Low-Valent Carbon Species: A ∼6 eV Range of Ionization Potentials among Carbenes, Ylides, and Carbodiphosphoranes 低价碳种的理论光电子能谱:碳烯类、酰类和碳二磷烷之间的A ~ 6 eV电离电位范围
ACS Organic & Inorganic Au Pub Date : 2022-12-02 DOI: 10.1021/acsorginorgau.2c00045
Abhik Ghosh*,  and , Jeanet Conradie*, 
{"title":"Theoretical Photoelectron Spectroscopy of Low-Valent Carbon Species: A ∼6 eV Range of Ionization Potentials among Carbenes, Ylides, and Carbodiphosphoranes","authors":"Abhik Ghosh*,&nbsp; and ,&nbsp;Jeanet Conradie*,&nbsp;","doi":"10.1021/acsorginorgau.2c00045","DOIUrl":"10.1021/acsorginorgau.2c00045","url":null,"abstract":"<p >High-quality density functional theory calculations underscore a nearly 6 eV range for the ionization potentials (IPs) of neutral, low-valent carbon compounds, including carbenes, ylides, and zero-valent carbon compounds (carbones) such as carbodiphosphoranes (CDPs) and carbodicarbenes. Thus, adiabatic IPs as low as 5.5 ± 0.1 eV are predicted for CDPs, which are about 0.7–1.2 eV lower than those of simple phosphorus and sulfur ylides. In contrast, the corresponding values for <i>N</i>-heterocyclic carbenes are about 8.0 eV while those for simple singlet carbenes such as dichlorocarbene and difluorocarbene range from about 9.0 eV to well over 11.0 eV.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.2c00045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9651961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Highly Selective Electrocatalytic Reduction of Substituted Nitrobenzenes to Their Aniline Derivatives Using a Polyoxometalate Redox Mediator 用多金属氧酸盐氧化还原介质高选择性电催化还原取代硝基苯为苯胺衍生物
ACS Organic & Inorganic Au Pub Date : 2022-11-21 DOI: 10.1021/acsorginorgau.2c00047
Athanasios D. Stergiou, Daniel H. Broadhurst and Mark D. Symes*, 
{"title":"Highly Selective Electrocatalytic Reduction of Substituted Nitrobenzenes to Their Aniline Derivatives Using a Polyoxometalate Redox Mediator","authors":"Athanasios D. Stergiou,&nbsp;Daniel H. Broadhurst and Mark D. Symes*,&nbsp;","doi":"10.1021/acsorginorgau.2c00047","DOIUrl":"10.1021/acsorginorgau.2c00047","url":null,"abstract":"<p >Anilines and substituted anilines are used on the multi-ton scale for producing polymers, pharmaceuticals, dyes, and other important compounds. Typically, these anilines are produced from their corresponding nitrobenzene precursors by reaction with hydrogen at high temperatures. However, this route suffers from a number of drawbacks, including the requirement to handle hydrogen gas, rather harsh reaction conditions that lead to a lack of selectivity and/or toleration of certain functional groups, and questionable environmental sustainability. In light of this, routes to the reduction of nitrobenzenes to their aniline derivatives that operate at room temperature, in aqueous solvent, and without the requirement to use harsh process conditions, hydrogen gas, or sacrificial reagents could be of tremendous benefit. Herein, we report on a highly selective electrocatalytic route for the reduction of nitrobenzenes to their corresponding anilines that works in aqueous solution at room temperature and which does not require the use of hydrogen gas or sacrificial reagents. The method uses a polyoxometalate redox mediator, which reversibly accepts electrons from the cathode and reacts with the nitrobenzenes in solution to reduce them to the corresponding anilines. A variety of substituted nitroarenes are explored as substrates, including those with potentially competing reducible groups and substrates that are difficult to reduce selectively by other means. In all cases, the selectivity for the redox-mediated route is higher than that for the direct reduction of the nitroarene substrates at the electrode, suggesting that redox-mediated electrochemical nitroarene reduction is a promising avenue for the more sustainable synthesis of substituted anilines.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.2c00047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10668202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信