ACS Organic & Inorganic AuPub Date : 2024-04-19DOI: 10.1021/acsorginorgau.3c0007010.1021/acsorginorgau.3c00070
Larissa A. Casper, Katharina L. Deuter, Anja Rehse and Rainer F. Winter*,
{"title":"Dimerization of 9-Phenyl-ferroceno[2,3]indenylmethyl Radicals: Electrochemical and Spectroelectrochemical Studies","authors":"Larissa A. Casper, Katharina L. Deuter, Anja Rehse and Rainer F. Winter*, ","doi":"10.1021/acsorginorgau.3c0007010.1021/acsorginorgau.3c00070","DOIUrl":"https://doi.org/10.1021/acsorginorgau.3c00070https://doi.org/10.1021/acsorginorgau.3c00070","url":null,"abstract":"<p >We report on three new 9-phenyl-substituted ferroceno[2,3]indenylmethylium dyes <b>1</b><sup><b>+</b></sup>–<b>3</b><sup><b>+</b></sup> with electron-donating (OMe, Me) or electron-withdrawing (CF<sub>3</sub>) substituents. Complexes <b>1</b><sup><b>+</b></sup>–<b>3</b><sup><b>+</b></sup> exist as racemic mixtures of <i>Rp</i> and <i>Sp</i> enantiomers. Pyramidalization at the methyl C atom in the precursor carbinol species <b>1-OH</b>–<b>3-OH</b> or the corresponding one-electron reduced radicals induces a second stereocenter, as the 9-phenyl substituent may reside in an <i>endo</i> or an <i>exo</i> position. Indeed, alcohol <b>2-OH</b> crystallizes as a racemate of <i>Rp</i>,<i>S</i> and <i>Sp</i>,<i>R</i> isomers. Cationic complexes <b>1</b><sup><b>+</b></sup>–<b>3</b><sup><b>+</b></sup> are of deep green color and show intense electronic absorption in the visible. The oxidation and reduction processes are thoroughly investigated by means of cyclic voltammetry and UV/vis/NIR spectroelectrochemistry, the latter showing their electrochromic behavior. <i>T</i>-dependent EPR spectroscopy, EPR spin counting at 20 °C, as well as the UV/vis/NIR spectra of the reduced samples suggest that the one-electron reduced, neutral radicals dimerize nearly quantitatively (≥99.98%). Chemical reduction of <b>2</b><sup><b>+</b></sup> furnished an isomeric mixture of dimeric <b>2</b>–<b>2</b>. As was shown by cyclic voltammetry and UV/vis/NIR spectroelectrochemistry, the latter dimer redissociates to monomers <b>2</b><sup><b>+</b></sup> upon oxidation, thereby closing a reversible cycle of redox-induced C–C bond making and breaking.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 4","pages":"395–409 395–409"},"PeriodicalIF":3.3,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00070","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141954741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Organic & Inorganic AuPub Date : 2024-03-26DOI: 10.1021/acsorginorgau.4c0000510.1021/acsorginorgau.4c00005
Peter J. Canfield*, Jeffrey R. Reimers* and Maxwell J. Crossley*,
{"title":"“Polytopal Rearrangement Model of Stereoisomerization” and Its Potential as the Basis for a Systematic Model of All Stereoisomerism","authors":"Peter J. Canfield*, Jeffrey R. Reimers* and Maxwell J. Crossley*, ","doi":"10.1021/acsorginorgau.4c0000510.1021/acsorginorgau.4c00005","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00005https://doi.org/10.1021/acsorginorgau.4c00005","url":null,"abstract":"<p >The term “polytopal rearrangement” describes any shape changing process operating on a coordination “polyhedron”─the solid figure defined by the positions of the ligand atoms directly attached to the central atom of a coordination entity. Developed in the latter third of the last century, the polytopal rearrangement model of stereoisomerization is a general mathematical approach for analyzing and accommodating the complexity of such processes for any coordination number. The motivation for the model was principally to deal with the complexity, such as Berry pseudorotation in pentavalent phosphorus species, arising from rearrangements in inorganic coordination complexes of higher coordination numbers. The model is also applicable to lower coordination centers, for example, thermal “inversion” at nitrogen in NH<sub>3</sub> and amines. We present the history of the model focusing on its essential features, and review some of the more subtle aspects addressed in recent literature. We then introduce a more detailed and rigorous modern approach for describing such processes using an assembly of existing concepts, with the addition of formally described terminology and representations. In our outlook, we contend that the rigorous and exhaustive application of the principles of the polytopal rearrangement model, when combined with torsional isomerism, will provide a basis for a mathematically complete, general, and systematic classification for all stereoisomerism and stereoisomerization. This is essential for comprehensively mapping chemical structure and reaction spaces.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 4","pages":"356–372 356–372"},"PeriodicalIF":3.3,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Peter J. Canfield, Jeffrey R. Reimers, Maxwell J. Crossley
{"title":"“Polytopal Rearrangement Model of Stereoisomerization” and Its Potential as the Basis for a Systematic Model of All Stereoisomerism","authors":"Peter J. Canfield, Jeffrey R. Reimers, Maxwell J. Crossley","doi":"10.1021/acsorginorgau.4c00005","DOIUrl":"https://doi.org/10.1021/acsorginorgau.4c00005","url":null,"abstract":"The term “polytopal rearrangement” describes any shape changing process operating on a coordination “polyhedron”─the solid figure defined by the positions of the ligand atoms directly attached to the central atom of a coordination entity. Developed in the latter third of the last century, the polytopal rearrangement model of stereoisomerization is a general mathematical approach for analyzing and accommodating the complexity of such processes for any coordination number. The motivation for the model was principally to deal with the complexity, such as Berry pseudorotation in pentavalent phosphorus species, arising from rearrangements in inorganic coordination complexes of higher coordination numbers. The model is also applicable to lower coordination centers, for example, thermal “inversion” at nitrogen in NH<sub>3</sub> and amines. We present the history of the model focusing on its essential features, and review some of the more subtle aspects addressed in recent literature. We then introduce a more detailed and rigorous modern approach for describing such processes using an assembly of existing concepts, with the addition of formally described terminology and representations. In our outlook, we contend that the rigorous and exhaustive application of the principles of the polytopal rearrangement model, when combined with torsional isomerism, will provide a basis for a mathematically complete, general, and systematic classification for all stereoisomerism and stereoisomerization. This is essential for comprehensively mapping chemical structure and reaction spaces.","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"128 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140311639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clarabella J. Li, Joseph W. Ziller, Jeffrey M. Barlow, Jenny Y. Yang
{"title":"Aqueous Electrochemical and pH Studies of Redox-Active Guanidino Functionalized Aromatics for CO2 Capture","authors":"Clarabella J. Li, Joseph W. Ziller, Jeffrey M. Barlow, Jenny Y. Yang","doi":"10.1021/acsorginorgau.3c00066","DOIUrl":"https://doi.org/10.1021/acsorginorgau.3c00066","url":null,"abstract":"Escalating levels of carbon dioxide (CO<sub>2</sub>) in the atmosphere have motivated interest in CO<sub>2</sub> capture and concentration from dilute streams. A guanidino-functionalized aromatic 1,4-bis(tetramethylguanidino)benzene (1,4-btmgb) was evaluated both as a redox-active sorbent and as a pH swing mediator for electrochemical CO<sub>2</sub> capture and concentration. Spectroscopic and crystallographic studies demonstrate that 1,4-btmgb reacts with CO<sub>2</sub> in water to form 1,4-btmgbH<sub>2</sub>(HCO<sub>3</sub><sup>–</sup>)<sub>2</sub>. The product suggests that 1,4-btmgb could be used in an aqueous redox pH swing cycle for the capture and concentration of CO<sub>2</sub>. The synthesis and characterization of the mono- and diprotonated forms (1,4-btmgbH<sup>+</sup> and 1,4-btmgbH<sub>2</sub><sup>2+</sup>) and their p<i>K</i><sub>a</sub> values were measured to be 13.5 and 11.0 in water, respectively. Electrochemical pH swing experiments indicate the formation of an intermediate radical species and other degradation pathways, which ultimately inhibited fully reversible redox-induced pH cycling.","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
ACS Organic & Inorganic AuPub Date : 2024-03-22DOI: 10.1021/acsorginorgau.3c0006610.1021/acsorginorgau.3c00066
Clarabella J. Li, Joseph W. Ziller, Jeffrey M. Barlow and Jenny Y. Yang*,
{"title":"Aqueous Electrochemical and pH Studies of Redox-Active Guanidino Functionalized Aromatics for CO2 Capture","authors":"Clarabella J. Li, Joseph W. Ziller, Jeffrey M. Barlow and Jenny Y. Yang*, ","doi":"10.1021/acsorginorgau.3c0006610.1021/acsorginorgau.3c00066","DOIUrl":"https://doi.org/10.1021/acsorginorgau.3c00066https://doi.org/10.1021/acsorginorgau.3c00066","url":null,"abstract":"<p >Escalating levels of carbon dioxide (CO<sub>2</sub>) in the atmosphere have motivated interest in CO<sub>2</sub> capture and concentration from dilute streams. A guanidino-functionalized aromatic 1,4-bis(tetramethylguanidino)benzene (1,4-btmgb) was evaluated both as a redox-active sorbent and as a pH swing mediator for electrochemical CO<sub>2</sub> capture and concentration. Spectroscopic and crystallographic studies demonstrate that 1,4-btmgb reacts with CO<sub>2</sub> in water to form 1,4-btmgbH<sub>2</sub>(HCO<sub>3</sub><sup>–</sup>)<sub>2</sub>. The product suggests that 1,4-btmgb could be used in an aqueous redox pH swing cycle for the capture and concentration of CO<sub>2</sub>. The synthesis and characterization of the mono- and diprotonated forms (1,4-btmgbH<sup>+</sup> and 1,4-btmgbH<sub>2</sub><sup>2+</sup>) and their p<i>K</i><sub>a</sub> values were measured to be 13.5 and 11.0 in water, respectively. Electrochemical pH swing experiments indicate the formation of an intermediate radical species and other degradation pathways, which ultimately inhibited fully reversible redox-induced pH cycling.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 4","pages":"387–394 387–394"},"PeriodicalIF":3.3,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141959306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Continuous Flow Electroselenocyclization of Allylamides and Unsaturated Oximes to Selenofunctionalized Oxazolines and Isoxazolines","authors":"Ohud Alzaidi, and , Thomas Wirth*, ","doi":"10.1021/acsorginorgau.4c00008","DOIUrl":"10.1021/acsorginorgau.4c00008","url":null,"abstract":"<p >The synthesis of selenofunctionalized oxazolines and isoxazolines from <i>N</i>-allyl benzamides and unsaturated oximes with diselenides was studied by utilizing a continuous flow electrochemical approach. At mild reaction conditions and short reaction times of 10 min product yields of up to 90% were achieved including a scale-up reaction. A broad substrate scope was studied and the reaction was shown to have a wide functional group tolerance.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 3","pages":"350–355"},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.4c00008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140099158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Holistic Assessment of NIR-Emitting Nd3+-Activated Phosphate Glasses: A Structure–Property Relationship Study","authors":"José A. Jiménez*, ","doi":"10.1021/acsorginorgau.3c00071","DOIUrl":"10.1021/acsorginorgau.3c00071","url":null,"abstract":"<p >Near-infrared (NIR)-emitting phosphate glasses containing Nd<sup>3+</sup> ions are attractive for applications in laser materials and solar spectral converters. The composition–structure–property relation in this type of glass system is thus of interest from fundamental and applied perspectives. In this work, Nd<sup>3+</sup>-containing glasses were made by melting with 50P<sub>2</sub>O<sub>5</sub>-(50 – <i>x</i>)BaO-<i>x</i>Nd<sub>2</sub>O<sub>3</sub> (<i>x</i> = 0, 0.5, 1.0, 2.0, 3.0, 4.0 mol %) nominal compositions and studied comprehensively by density and related physical properties, X-ray diffraction (XRD), Raman spectroscopy, O 1s X-ray photoelectron spectroscopy (XPS), differential scanning calorimetry (DSC), dilatometry, ultraviolet–visible (UV–vis)–NIR optical absorption, and photoluminescence (PL) spectroscopy with decay dynamics assessment. The densities and molar volumes of the Nd<sup>3+</sup>-containing glasses generally increased with Nd<sub>2</sub>O<sub>3</sub> concentration also resulting in shorter Nd<sup>3+</sup>–Nd<sup>3+</sup> distances. XRD supported the amorphous nature of the glasses, whereas the Raman spectra evolution was indicative of glass depolymerization being induced by Nd<sup>3+</sup> ions. Oxygen (1s) and phosphorus (2p) analysis by XPS for the glass with 4.0 mol % Nd<sub>2</sub>O<sub>3</sub> agreed with the increase in nonbridging oxygens relative to the undoped host. DSC results showed that the glass transition temperatures increased with Nd<sup>3+</sup> concentration, with the glasses also displaying a decreased tendency toward crystallization. Dilatometry showed trends of increasing softening temperatures and decreasing thermal expansion coefficients with increasing Nd<sub>2</sub>O<sub>3</sub> content. A glass strengthening/tightening effect was then indicated to be induced by Nd<sup>3+</sup> with higher field strength compared to Ba<sup>2+</sup> ions. The UV–vis–NIR absorption by Nd<sup>3+</sup> ions increased consistently with Nd<sup>3+</sup> concentration. The UV–vis absorption edges of the Nd-containing glasses were also analyzed via Tauc and Urbach plots for comparison with the undoped host. Concerning the PL behavior, the Nd<sup>3+</sup> NIR emission intensity was highest for 1.0 mol % Nd<sub>2</sub>O<sub>3</sub> and decreased thereafter. The decay kinetics of the <sup>4</sup>F<sub>3/2</sub> emitting state in Nd<sup>3+</sup> ions analyzed revealed decreasing lifetimes where the decay rate analysis pointed to the prevalence of ion–ion excitation migration leading to PL quenching at high Nd<sup>3+</sup> concentrations.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 3","pages":"338–349"},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00071","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140071412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Difunctionalization Processes Enabled by Hexafluoroisopropanol","authors":"Maciej Piejko, Joseph Moran* and David Lebœuf*, ","doi":"10.1021/acsorginorgau.3c00067","DOIUrl":"10.1021/acsorginorgau.3c00067","url":null,"abstract":"<p >In the past 5 years, hexafluoroisopropanol (HFIP) has been used as a unique solvent or additive to enable challenging transformations through substrate activation and stabilization of reactive intermediates. In this Review, we aim at describing difunctionalization processes which were unlocked when HFIP was involved. Specifically, we focus on cyclizations and additions to alkenes, alkynes, epoxides, and carbonyls that introduce a wide range of functional groups of interest.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 3","pages":"287–300"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140071100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nils Ostermann, Nils Rotthowe, A. Claudia Stückl and Inke Siewert*,
{"title":"(Electro)chemical N2 Splitting by a Molybdenum Complex with an Anionic PNP Pincer-Type Ligand","authors":"Nils Ostermann, Nils Rotthowe, A. Claudia Stückl and Inke Siewert*, ","doi":"10.1021/acsorginorgau.3c00056","DOIUrl":"10.1021/acsorginorgau.3c00056","url":null,"abstract":"<p >Molybdenum(III) complexes bearing pincer-type ligands are well-known catalysts for N<sub>2</sub>-to-NH<sub>3</sub> reduction. We investigated herein the impact of an anionic PNP pincer-type ligand in a Mo(III) complex on the (electro)chemical N<sub>2</sub> splitting ([<i>L</i>MoCl<sub>3</sub>]<sup>−</sup>, <b>1</b><sup>–</sup>, <i>L</i>H = 2,6-bis((di-<i>tert</i>-butylphosphaneyl)methyl)-pyridin-4-one). The increased electron-donating properties of the anionic ligand should lead to a stronger degree of N<sub>2</sub> activation. The catalyst is indeed active in N<sub>2</sub>-to-NH<sub>3</sub> conversion utilizing the proton-coupled electron transfer reagent SmI<sub>2</sub>/ethylene glycol. The corresponding Mo(V) nitrido complex <b>2H</b> exhibits similar catalytic activity as <b>1H</b> and thus could represent a viable intermediate. The Mo(IV) nitrido complex <b>3</b><sup><i>–</i></sup> is also accessible by electrochemical reduction of <b>1</b><sup>–</sup> under a N<sub>2</sub> atmosphere. IR- and UV/vis-SEC measurements suggest that N<sub>2</sub> splitting occurs via formation of an “overreduced” but more stable [(<i>L</i>(N<sub>2</sub>)<sub>2</sub>Mo<sup>0</sup>)<sub>2</sub>μ-N<sub>2</sub>]<sup>2–</sup> dimer. In line with this, the yield in the nitrido complex increases with lower applied potentials.</p>","PeriodicalId":29797,"journal":{"name":"ACS Organic & Inorganic Au","volume":"4 3","pages":"329–337"},"PeriodicalIF":0.0,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsorginorgau.3c00056","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140071246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}