Precision Chemistry最新文献

筛选
英文 中文
The Trend of Nonenzymatic Nucleic Acid Amplification: Strategies and Diagnostic Application. 非酶核酸扩增的趋势:策略和诊断应用。
Precision Chemistry Pub Date : 2025-03-03 eCollection Date: 2025-04-28 DOI: 10.1021/prechem.4c00100
Junyou Li, Ting Li, Zheng Zou, Hung-Wing Li
{"title":"The Trend of Nonenzymatic Nucleic Acid Amplification: Strategies and Diagnostic Application.","authors":"Junyou Li, Ting Li, Zheng Zou, Hung-Wing Li","doi":"10.1021/prechem.4c00100","DOIUrl":"https://doi.org/10.1021/prechem.4c00100","url":null,"abstract":"<p><p>Nonenzymatic nucleic acid amplification reactions, especially nonenzymatic DNA amplification reactions (NDARs), are thermodynamically driven processes that operate without enzymes, relying on toehold-mediated strand displacement (TMSD) and branch migration. With their sensitive and efficient signal amplification capabilities, NDARs have become essential tools for biomarker detection and intracellular imaging. They encompass four primary amplification methods: catalytic hairpin assembly (CHA), hybridization chain reaction (HCR), DNAzyme-based amplification, and entropy-driven circuits (EDC). Based on amplification mechanisms, NDARs can be categorized into three types: stimuli-responsive NDARs, which employ single amplification strategies triggered by specific stimuli like pH, light, or biomolecules; cascade NDARs, which integrate two or more amplification reactions for stepwise signal enhancement; and autocatalytic NDARs, which achieve exponential amplification through self-sustained cycling. These advanced designs progressively improve amplification efficiency, enhance sensitivity, and minimize background noise, enabling precise detection of proteins, viruses, and nucleic acids as well as applications in cancer cell imaging and therapy. Compared with classical NDARs, these approaches significantly reduce signal leakage, offering broader applicability in diagnostics, imaging, and therapeutic contexts. This review summarizes recent advancements, addresses existing challenges, and explores future directions, providing insights into the development and applications of NDARs.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 4","pages":"187-205"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144003612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3D Printed Microfluidic Devices for Integrated Immunoaffinity Extraction, Solid-Phase Extraction, and Fluorescent Labeling of Preterm Birth Biomarkers. 3D打印微流控设备集成免疫亲和萃取,固相萃取,早产生物标志物荧光标记。
Precision Chemistry Pub Date : 2025-03-03 eCollection Date: 2025-05-26 DOI: 10.1021/prechem.4c00092
James D Holladay, Zachary A Berkheimer, Michael K Haggard, Jacob B Nielsen, Gregory P Nordin, Adam T Woolley
{"title":"3D Printed Microfluidic Devices for Integrated Immunoaffinity Extraction, Solid-Phase Extraction, and Fluorescent Labeling of Preterm Birth Biomarkers.","authors":"James D Holladay, Zachary A Berkheimer, Michael K Haggard, Jacob B Nielsen, Gregory P Nordin, Adam T Woolley","doi":"10.1021/prechem.4c00092","DOIUrl":"10.1021/prechem.4c00092","url":null,"abstract":"<p><p>A miniaturized, biomarker-based diagnostic for preterm birth (PTB) risk will require multiple sample preparation steps to be integrated in a single platform. To this end, we created a 3D printed microfluidic device that combines immunoaffinity extraction (IAE), solid-phase extraction (SPE), and fluorescent labeling. This device uses an antibody-functionalized IAE monolith to selectively extract PTB biomarkers, a lauryl methacrylate reverse-phase SPE monolith to concentrate and facilitate fluorescent labeling of PTB biomarkers, and 3D printed valves to control flow through the monoliths. The advantageous iterative design process for arriving at a functional device is documented. The IAE/SPE device performed selective, reproducible extractions of three PTB biomarkers from buffer and depleted maternal blood serum, demonstrating its utility for single-biomarker and multiplexed extractions. After tandem extraction and fluorescent labeling, biomarkers eluted from the SPE monolith in a concentrated plug, facilitating future integration with downstream analysis techniques including microchip electrophoresis. This device effectively combines and automates orthogonal chromatographic extraction methods and constitutes a substantial step toward a complete microfluidic PTB prediction platform.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 5","pages":"261-271"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144183039","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Trend of Nonenzymatic Nucleic Acid Amplification: Strategies and Diagnostic Application 非酶核酸扩增的趋势:策略和诊断应用
Precision Chemistry Pub Date : 2025-03-03 DOI: 10.1021/prechem.4c0010010.1021/prechem.4c00100
Junyou Li, Ting Li, Zheng Zou and Hung-Wing Li*, 
{"title":"The Trend of Nonenzymatic Nucleic Acid Amplification: Strategies and Diagnostic Application","authors":"Junyou Li,&nbsp;Ting Li,&nbsp;Zheng Zou and Hung-Wing Li*,&nbsp;","doi":"10.1021/prechem.4c0010010.1021/prechem.4c00100","DOIUrl":"https://doi.org/10.1021/prechem.4c00100https://doi.org/10.1021/prechem.4c00100","url":null,"abstract":"<p >Nonenzymatic nucleic acid amplification reactions, especially nonenzymatic DNA amplification reactions (NDARs), are thermodynamically driven processes that operate without enzymes, relying on toehold-mediated strand displacement (TMSD) and branch migration. With their sensitive and efficient signal amplification capabilities, NDARs have become essential tools for biomarker detection and intracellular imaging. They encompass four primary amplification methods: catalytic hairpin assembly (CHA), hybridization chain reaction (HCR), DNAzyme-based amplification, and entropy-driven circuits (EDC). Based on amplification mechanisms, NDARs can be categorized into three types: stimuli-responsive NDARs, which employ single amplification strategies triggered by specific stimuli like pH, light, or biomolecules; cascade NDARs, which integrate two or more amplification reactions for stepwise signal enhancement; and autocatalytic NDARs, which achieve exponential amplification through self-sustained cycling. These advanced designs progressively improve amplification efficiency, enhance sensitivity, and minimize background noise, enabling precise detection of proteins, viruses, and nucleic acids as well as applications in cancer cell imaging and therapy. Compared with classical NDARs, these approaches significantly reduce signal leakage, offering broader applicability in diagnostics, imaging, and therapeutic contexts. This review summarizes recent advancements, addresses existing challenges, and explores future directions, providing insights into the development and applications of NDARs.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 4","pages":"187–205 187–205"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00100","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143878358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Management of Platinum Electronic States through Metal Host–Guest Interactions for Enhanced Oxygen Reduction 通过金属主客体相互作用增强氧还原对铂电子态的管理
Precision Chemistry Pub Date : 2025-03-03 DOI: 10.1021/prechem.4c0007310.1021/prechem.4c00073
Yudan Chen, Yuanhua Sun, Sicheng Li, Xiaokang Liu, Wei Zhang, Qiquan Luo, Dong Liu*, Tao Ding* and Tao Yao*, 
{"title":"Management of Platinum Electronic States through Metal Host–Guest Interactions for Enhanced Oxygen Reduction","authors":"Yudan Chen,&nbsp;Yuanhua Sun,&nbsp;Sicheng Li,&nbsp;Xiaokang Liu,&nbsp;Wei Zhang,&nbsp;Qiquan Luo,&nbsp;Dong Liu*,&nbsp;Tao Ding* and Tao Yao*,&nbsp;","doi":"10.1021/prechem.4c0007310.1021/prechem.4c00073","DOIUrl":"https://doi.org/10.1021/prechem.4c00073https://doi.org/10.1021/prechem.4c00073","url":null,"abstract":"<p >Controlling the electronic states of Pt-based catalysts holds great promise for enhancing the intrinsic activity of the oxygen reduction reaction (ORR). Herein, inspired by first-principles simulations, we propose a strategy using metal host–guest interactions to tune Pt 5d electronic characteristics to optimize the adsorption strength of the key *OH intermediate. The hybrid electrocatalyst of Pt nanoparticles on a single-atom Co–N–C support (Pt@Co<sub>L</sub> SAs) exhibits a half-wave potential of 0.92 V and a mass activity of 3.2 A·mg<sub>Pt</sub><sup>–1</sup> at 0.9 V in 0.1 M HClO<sub>4</sub>, which is a 20-fold enhancement compared with commercial Pt/C. Impressively, the Pt loading in the catalyst is as low as 1.70 wt %, which represents the lowest value reported in the relevant literature on Pt-based acidic ORR catalysts. Comprehensive spectroscopy investigations and theoretical simulations revealed that the precise regulatory effect of Co in various dispersion states effectively weakens the intermediate adsorption and reduces the energy barrier for the water decomposition step. Our finding provides valuable insights for the development of advanced ultralow-Pt ORR catalysts via the integration engineering of multiple metal sites.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 5","pages":"279–288 279–288"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/prechem.4c00073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144133939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Management of Platinum Electronic States through Metal Host-Guest Interactions for Enhanced Oxygen Reduction. 通过金属主客体相互作用增强氧还原对铂电子态的管理。
Precision Chemistry Pub Date : 2025-03-03 eCollection Date: 2025-05-26 DOI: 10.1021/prechem.4c00073
Yudan Chen, Yuanhua Sun, Sicheng Li, Xiaokang Liu, Wei Zhang, Qiquan Luo, Dong Liu, Tao Ding, Tao Yao
{"title":"Management of Platinum Electronic States through Metal Host-Guest Interactions for Enhanced Oxygen Reduction.","authors":"Yudan Chen, Yuanhua Sun, Sicheng Li, Xiaokang Liu, Wei Zhang, Qiquan Luo, Dong Liu, Tao Ding, Tao Yao","doi":"10.1021/prechem.4c00073","DOIUrl":"10.1021/prechem.4c00073","url":null,"abstract":"<p><p>Controlling the electronic states of Pt-based catalysts holds great promise for enhancing the intrinsic activity of the oxygen reduction reaction (ORR). Herein, inspired by first-principles simulations, we propose a strategy using metal host-guest interactions to tune Pt 5d electronic characteristics to optimize the adsorption strength of the key *OH intermediate. The hybrid electrocatalyst of Pt nanoparticles on a single-atom Co-N-C support (Pt@Co<sub>L</sub> SAs) exhibits a half-wave potential of 0.92 V and a mass activity of 3.2 A·mg<sub>Pt</sub> <sup>-1</sup> at 0.9 V in 0.1 M HClO<sub>4</sub>, which is a 20-fold enhancement compared with commercial Pt/C. Impressively, the Pt loading in the catalyst is as low as 1.70 wt %, which represents the lowest value reported in the relevant literature on Pt-based acidic ORR catalysts. Comprehensive spectroscopy investigations and theoretical simulations revealed that the precise regulatory effect of Co in various dispersion states effectively weakens the intermediate adsorption and reduces the energy barrier for the water decomposition step. Our finding provides valuable insights for the development of advanced ultralow-Pt ORR catalysts via the integration engineering of multiple metal sites.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 5","pages":"279-288"},"PeriodicalIF":0.0,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12117436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144183422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision Chemistry Pub Date : 2025-02-24
Yangyang Jiang, Junyang Liu, Yian Guo and Tao Ye*, 
{"title":"","authors":"Yangyang Jiang,&nbsp;Junyang Liu,&nbsp;Yian Guo and Tao Ye*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 2","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/prechem.4c00082","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144397523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision Chemistry Pub Date : 2025-02-24
Xianbing Miao, Jingda Zhang, Zhenpeng Hu* and Shiming Zhou*, 
{"title":"","authors":"Xianbing Miao,&nbsp;Jingda Zhang,&nbsp;Zhenpeng Hu* and Shiming Zhou*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 2","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/prechem.4c00068","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144397530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision Chemistry Pub Date : 2025-02-24
{"title":"","authors":"","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 2","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/pcv003i002_1903729","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144397524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision Chemistry Pub Date : 2025-02-24
Yang Liu, Ziren Wang, Guoliang Hu, Xiaomeng Chen, Ke Xu, Yuqiao Guo*, Yi Xie and Changzheng Wu*, 
{"title":"","authors":"Yang Liu,&nbsp;Ziren Wang,&nbsp;Guoliang Hu,&nbsp;Xiaomeng Chen,&nbsp;Ke Xu,&nbsp;Yuqiao Guo*,&nbsp;Yi Xie and Changzheng Wu*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 2","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/prechem.4c00084","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144397532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Precision Chemistry Pub Date : 2025-02-24
Tong Ye Wang, Jessica Latimer, Jean-Luc Rukundo, Isaac Kogan, Svetlana M. Krylova, Sebastian Schreiber, Philip Kohlmann, Joachim Jose and Sergey N. Krylov*, 
{"title":"","authors":"Tong Ye Wang,&nbsp;Jessica Latimer,&nbsp;Jean-Luc Rukundo,&nbsp;Isaac Kogan,&nbsp;Svetlana M. Krylova,&nbsp;Sebastian Schreiber,&nbsp;Philip Kohlmann,&nbsp;Joachim Jose and Sergey N. Krylov*,&nbsp;","doi":"","DOIUrl":"","url":null,"abstract":"","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 2","pages":"XXX-XXX XXX-XXX"},"PeriodicalIF":0.0,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/pdf/10.1021/prechem.4c00085","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144397528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信