Photoresponsive Coatings by Light-Driven Molecular Motors in Cholesteric Liquid Crystal Microcapsules.

Precision Chemistry Pub Date : 2025-03-05 eCollection Date: 2025-03-24 DOI:10.1021/prechem.4c00103
Yan Wang, Yang Zhang, Shuhua Li, Wang Sun, Zhen Zhang, Guofu Zhou, Ben L Feringa, Jiawen Chen
{"title":"Photoresponsive Coatings by Light-Driven Molecular Motors in Cholesteric Liquid Crystal Microcapsules.","authors":"Yan Wang, Yang Zhang, Shuhua Li, Wang Sun, Zhen Zhang, Guofu Zhou, Ben L Feringa, Jiawen Chen","doi":"10.1021/prechem.4c00103","DOIUrl":null,"url":null,"abstract":"<p><p>Photoresponsive coatings that can change their color in response to light at ambient temperature have large potential applications. Cholesteric liquid crystals (CLCs) are promising photochromic materials, as they are known to reflect light selectively and their optical properties can be modulated with a wide range. However, it remains a major challenge to fabricate photoresponsive coatings that combine fast and good responsivity, fabrication feasibility, and mechanical strength and, more importantly, that can be applied at a large area with excellent stability. In this study, Pickering emulsions containing CLC microdroplets doped with light-driven molecular motors as photoresponsive chiral dopants were prepared via cellulose nanocrystals (CNCs) which serve as both Pickering emulsifiers and alignment agents of CLCs. A melamine-formaldehyde (MF) resin hybrid shell was fabricated via in situ polymerization to form thermally stable CLC microcapsules. These microcapsules were mixed with curable binders, resulting in photoresponsive coatings. The photochromic material which features highly selective addressability of the reflective light wavelength in the visible light region, good reversibility, and viewing angle independence was painted in a large area on both hard and soft substrates, providing a versatile platform for enhanced encryption and smart coatings.</p>","PeriodicalId":29793,"journal":{"name":"Precision Chemistry","volume":"3 3","pages":"149-156"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11938165/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/prechem.4c00103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/24 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photoresponsive coatings that can change their color in response to light at ambient temperature have large potential applications. Cholesteric liquid crystals (CLCs) are promising photochromic materials, as they are known to reflect light selectively and their optical properties can be modulated with a wide range. However, it remains a major challenge to fabricate photoresponsive coatings that combine fast and good responsivity, fabrication feasibility, and mechanical strength and, more importantly, that can be applied at a large area with excellent stability. In this study, Pickering emulsions containing CLC microdroplets doped with light-driven molecular motors as photoresponsive chiral dopants were prepared via cellulose nanocrystals (CNCs) which serve as both Pickering emulsifiers and alignment agents of CLCs. A melamine-formaldehyde (MF) resin hybrid shell was fabricated via in situ polymerization to form thermally stable CLC microcapsules. These microcapsules were mixed with curable binders, resulting in photoresponsive coatings. The photochromic material which features highly selective addressability of the reflective light wavelength in the visible light region, good reversibility, and viewing angle independence was painted in a large area on both hard and soft substrates, providing a versatile platform for enhanced encryption and smart coatings.

胆甾型液晶微胶囊的光响应涂层。
光响应涂层可以在环境温度下改变其颜色,具有很大的潜在应用前景。胆甾相液晶(CLCs)是一种很有前途的光致变色材料,因为它们具有选择性反射光,并且其光学性质可以在很宽的范围内调制。然而,制造光响应涂层仍然是一个主要的挑战,它结合了快速和良好的响应性,制造可行性和机械强度,更重要的是,可以在大范围内应用并具有优异的稳定性。本研究以纤维素纳米晶体(CNCs)为原料,制备了掺杂了光驱动分子马达的CLC微滴皮克林乳状液作为光响应性手性掺杂剂。采用原位聚合法制备了三聚氰胺-甲醛(MF)树脂杂化壳,制备了热稳定的CLC微胶囊。这些微胶囊与可固化的粘合剂混合,产生光响应涂层。这种光致变色材料在可见光区域具有高度选择性的反射光波长可寻址性、良好的可逆性和视角独立性,可在硬基材和软基材上大面积涂覆,为增强加密和智能涂层提供了一个通用平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Chemistry
Precision Chemistry 精密化学技术-
CiteScore
0.80
自引率
0.00%
发文量
0
期刊介绍: Chemical research focused on precision enables more controllable predictable and accurate outcomes which in turn drive innovation in measurement science sustainable materials information materials personalized medicines energy environmental science and countless other fields requiring chemical insights.Precision Chemistry provides a unique and highly focused publishing venue for fundamental applied and interdisciplinary research aiming to achieve precision calculation design synthesis manipulation measurement and manufacturing. It is committed to bringing together researchers from across the chemical sciences and the related scientific areas to showcase original research and critical reviews of exceptional quality significance and interest to the broad chemistry and scientific community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信