Small SciencePub Date : 2024-07-30DOI: 10.1002/smsc.202400248
Manav Jain, Xinjie Yu, Jonathan P. Schneck, Jordan J. Green
{"title":"Nanoparticle Targeting Strategies for Lipid and Polymer-Based Gene Delivery to Immune Cells In Vivo","authors":"Manav Jain, Xinjie Yu, Jonathan P. Schneck, Jordan J. Green","doi":"10.1002/smsc.202400248","DOIUrl":"https://doi.org/10.1002/smsc.202400248","url":null,"abstract":"Lipid nanoparticles and polymeric nanoparticles are promising biomaterial platforms for robust intracellular DNA and mRNA delivery, highlighted by the widespread use of nanoparticle- (NP) based mRNA vaccines to help end the COVID-19 pandemic. Recent research has sought to adapt this nanotechnology to transfect and engineer immune cells in vivo. The immune system is an especially appealing target due to its involvement in many different diseases, and ex vivo-engineered immune cell therapies like chimeric antigen receptor (CAR) T therapy have already demonstrated remarkable clinical success in certain blood cancers. Although gene delivery can potentially address some of the cost and manufacturing concerns associated with current autologous immune cell therapies, transfecting immune cells in vivo is challenging. Not only is extrahepatic NP delivery to lymphoid organs difficult, but immune cells like T cells have demonstrated particular resistance to transfection. Despite these challenges, the modular nature of NPs allows researchers to examine critical structure–function relationships between a particle's properties and its ability to specifically engineer immune cells in vivo. Herein, several nanomaterial components are outlined, including targeting ligands, nucleic acid cargo, chemical properties, physical properties, and the route of administration to specifically target NPs to immune cells for optimal in vivo transfection.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"76 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141864765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-25DOI: 10.1002/smsc.202400192
Neda Rostami, Mohammad Mahmoudi Gomari, Edris Choupani, Shadi Abkhiz, Mahmood Fadaie, Seyed Sadegh Eslami, Zahra Mahmoudi, Yapei Zhang, Madhu Puri, Fatemeh Nafe Monfared, Elena Demireva, Vladimir N. Uversky, Bryan Ronain Smith, Sidi A. Bencherif
{"title":"Exploring Advanced CRISPR Delivery Technologies for Therapeutic Genome Editing","authors":"Neda Rostami, Mohammad Mahmoudi Gomari, Edris Choupani, Shadi Abkhiz, Mahmood Fadaie, Seyed Sadegh Eslami, Zahra Mahmoudi, Yapei Zhang, Madhu Puri, Fatemeh Nafe Monfared, Elena Demireva, Vladimir N. Uversky, Bryan Ronain Smith, Sidi A. Bencherif","doi":"10.1002/smsc.202400192","DOIUrl":"https://doi.org/10.1002/smsc.202400192","url":null,"abstract":"The genetic material within cells plays a pivotal role in shaping the structure and function of living organisms. Manipulating an organism's genome to correct inherited abnormalities or introduce new traits holds great promise. Genetic engineering techniques offers promising pathways for precisely altering cellular genetics. Among these methodologies, clustered regularly interspaced short palindromic repeat (CRISPR), honored with the 2020 Nobel Prize in Chemistry, has garnered significant attention for its precision in editing genomes. However, the CRISPR system faces challenges when applied in vivo, including low delivery efficiency, off-target effects, and instability. To address these challenges, innovative technologies for targeted and precise delivery of CRISPR have emerged. Engineered carrier platforms represent a substantial advancement, improving stability, precision, and reducing the side effects associated with genome editing. These platforms facilitate efficient local and systemic genome engineering of various tissues and cells, including immune cells. This review explores recent advances, benefits, and challenges of CRISPR-based genome editing delivery. It examines various carriers including nanocarriers (polymeric, lipid-derived, metallic, and bionanoparticles), viral particles, virus-like particles, and exosomes, providing insights into their clinical utility and future prospects.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"50 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-22DOI: 10.1002/smsc.202400160
Ying Yang, Jialin Gong, Xiaotian Wang, Zhenxiang Cheng, Tie Yang
{"title":"Unlocking Quantum Catalysis in Topological Trivial Materials: A Case Study of Janus Monolayer MoSMg","authors":"Ying Yang, Jialin Gong, Xiaotian Wang, Zhenxiang Cheng, Tie Yang","doi":"10.1002/smsc.202400160","DOIUrl":"https://doi.org/10.1002/smsc.202400160","url":null,"abstract":"The emerging field of topological catalysis has received significant attention due to its potential for high-performance catalytic activity in the hydrogen-evolution reaction (HER). While topological materials often possess fragile surface states, trivial topological materials not only offer a larger pool of candidates but also demonstrate robust surface states. As a result, the search for topological catalysts has expanded to include trivial schemes. In this study, a novel 2D Janus monolayer, MoSMg, which demonstrates exceptional obstructed atomic insulating behavior, is presented. Crucially, this trivial metallic topological state exhibits clean obstructed surface states, leading to a significant enhancement in catalytic performance for the HER in electrochemical processes, particularly under high hydrogen coverage. Moreover, the edge sites of this MoSMg monolayer exhibit even more superior catalytic activity, characterized by near-zero Gibbs free energies. In these findings, the way is paved for exploring new avenues in the design of quantum electrocatalysts, especially within the realm of trivial topological materials.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"46 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-22DOI: 10.1002/smsc.202400282
Nicola Curreli, Claudia Dessì, Matteo B. Lodi, Andrea Melis, Marco Simone, Nicola Melis, Luca Pilia, Davide Guarnera, Loreto Di Donato, Alessandro Fanti, Massimiliano Grosso, Francesco Desogus
{"title":"Cost-Effective Conductive Paste for Radiofrequency Devices Using Carbon-Based Materials","authors":"Nicola Curreli, Claudia Dessì, Matteo B. Lodi, Andrea Melis, Marco Simone, Nicola Melis, Luca Pilia, Davide Guarnera, Loreto Di Donato, Alessandro Fanti, Massimiliano Grosso, Francesco Desogus","doi":"10.1002/smsc.202400282","DOIUrl":"https://doi.org/10.1002/smsc.202400282","url":null,"abstract":"With the increasing demand for compact, lightweight, cost-effective, and high-performance radiofrequency (RF) devices, the development of low-profile antennas becomes crucial. This article presents a study of a novel carbon–cellulose-based paste intended for screen printing RF devices. The investigation specifically explores the application of high-reactivity carbon mixture (HRCM) particles as conductive fillers. The results demonstrate that optimal electrical conductivity values and discrete electromagnetic dipole performances can be achieved at lower concentrations of solid conductive material compared to conventional pastes, for similar applications. This offers benefits in terms of total cost, material consumption, and environmental impact. The paste formulation showcases a complex non-Newtonian behavior, where yielding flow and thixotropicity are found to be independent and dependent on preshear conditions, respectively. This behavior can be attributed to the network orientation and rearrangement of filler structures within the paste system, which in turn are responsible for filler pattern uniformity and overall printing quality. Compared to traditional conductive materials, HRCM pastes are proven to be a viable alternative for RF devices fabrication, including printed Wi-Fi antennas.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"38 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-22DOI: 10.1002/smsc.202400079
Farinaz Ketabat, Jane Alcorn, Michael E. Kelly, Ildiko Badea, Xiongbiao Chen
{"title":"Cardiac Tissue Engineering: A Journey from Scaffold Fabrication to In Vitro Characterization","authors":"Farinaz Ketabat, Jane Alcorn, Michael E. Kelly, Ildiko Badea, Xiongbiao Chen","doi":"10.1002/smsc.202400079","DOIUrl":"https://doi.org/10.1002/smsc.202400079","url":null,"abstract":"Cardiac tissue engineering has been rapidly evolving with diverse applications, ranging from the repair of fibrotic tissue caused by “adverse remodeling,” to the replacement of specific segments of heart tissue, and ultimately to the creation of a whole heart. The repair or replacement of cardiac tissue often involves the development of tissue scaffolds or constructs and the subsequent assessment of their performance and functionality. For this, the design and/or selection of biomaterials, and cell types, scaffold fabrication, and in vitro characterizations are the first starting points, yet critical, to ensure success in subsequent implantation in vivo. This highlights the importance of scaffold fabrication and in vitro experiments/characterization with protocols for cardiac tissue engineering. Yet, a comprehensive and critical review of these has not been established and documented. As inspired, herein, the latest development and advances in scaffold fabrication and in vitro characterization for cardiac tissue engineering are critically reviewed, with focus on biomaterials, cell types, additive manufacturing techniques for scaffold fabrication, and common in vitro characterization techniques or methods. This article would be of benefit to the ones who are working on cardiac tissue engineering by providing insights into the scaffold fabrication and in vitro investigations.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"70 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141781998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-21DOI: 10.1002/smsc.202400214
Yuchen Liu, Luai R. Khoury
{"title":"Design and Functionality of Trypsin-Triggered, Expandable Bovine Serum Albumin-Polyethylene Glycol Diacrylate Hydrogel Actuators","authors":"Yuchen Liu, Luai R. Khoury","doi":"10.1002/smsc.202400214","DOIUrl":"https://doi.org/10.1002/smsc.202400214","url":null,"abstract":"Expandable shape-morphing hydrogels that ensure prolonged site residence, have tailored mechanical integrity and tunability, are biocompatible to minimize side effects and can release drugs over an extended time remain challenging to achieve. Herein, a new class of enzyme-triggered bovine serum albumin and polyethylene glycol diacrylate hybrid hydrogels is presented, contributing to advancements in controlled drug-model release and actuation. These hydrogels combine the intrinsic properties of proteins with the resilience of synthetic polymers, offering a versatile application platform. Central to our research is the trypsin-induced simultaneous functionality of controlled drug model release and dynamic shape changes under physiological trypsin concentrations (0.01% w/v). These hydrogels display tailored mechanical and physical properties and microstructure, which are crucial for biomedical devices, soft robotics, and tissue engineering applications. Additionally, the hydrogels effectively control the release of fluorescein isothiocyanate, a model drug, indicating their potential for highly targeted drug delivery, particularly in the gastrointestinal tract. The study also highlights the significant effect of shape-morphing on drug release rates under physiological trypsin concentrations. These findings suggest that enzyme-responsive hybrid protein-polymer hydrogel actuators with tailored mechanical and physical properties can enhance the precision of drug delivery in biomedical applications.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"39 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-21DOI: 10.1002/smsc.202400158
Hanif Haidari, Richard Bright, Yunlong Yu, Krasimir Vasilev, Zlatko Kopecki
{"title":"Development of Microneedles for Antimicrobial Drug Delivery: A Comprehensive Review on Applications in Wound Infection Management","authors":"Hanif Haidari, Richard Bright, Yunlong Yu, Krasimir Vasilev, Zlatko Kopecki","doi":"10.1002/smsc.202400158","DOIUrl":"https://doi.org/10.1002/smsc.202400158","url":null,"abstract":"Microneedles (MNs) have emerged as a promising transdermal antimicrobial delivery system, providing precise and localized drug delivery while complemented with noninvasiveness and patient compliance. Currently, the topical application of antimicrobials restricts the delivery of drugs to the critical areas of the wound bed, largely due to barriers posed by the necrotic tissue, scab formation, and bacterial biofilms, which severely diminish the bioavailability of the therapeutics. MNs have enabled efficient and targeted delivery to overcome many chronic wound challenges. Over the past decade, significant progress has been made to develop MNs with unique properties tailored for the delivery of vaccines, anticancer, and antimicrobials. As ongoing research continues to refine MN design, material properties, and drug formulations, the potential for revolutionizing antimicrobial drug delivery for efficacy, patient experience, and therapeutic outcomes remains at the forefront of scientific research. In this review, insights are provided into the latest progress, current developments, and the diverse applications of MNs for antimicrobial drug delivery. Herein, the translational potential of MNs is highlighted and a perspective on the current challenges associated with clinical translation is provided. Furthermore, this review aids in identifying research gaps while empowering and contributing to the future implementation of cutting-edge delivery systems to effectively tackle antimicrobial resistance.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"334 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141737510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-21DOI: 10.1002/smsc.202400227
Raïssa Rathar, David Sanchez-Fuentes, Hugo Lachuer, Valentin Meire, Aude Boulay, Rudy Desgarceaux, Fabien P. Blanchet, Adrian Carretero-Genevrier, Laura Picas
{"title":"Tuning the Immune Cell Response through Surface Nanotopography Engineering","authors":"Raïssa Rathar, David Sanchez-Fuentes, Hugo Lachuer, Valentin Meire, Aude Boulay, Rudy Desgarceaux, Fabien P. Blanchet, Adrian Carretero-Genevrier, Laura Picas","doi":"10.1002/smsc.202400227","DOIUrl":"https://doi.org/10.1002/smsc.202400227","url":null,"abstract":"Dendritic cells (DCs) are central regulators of the immune response by detecting inflammatory signals, aberrant cells, or pathogens. DC-mediated immune surveillance requires morphology changes to adapt to the physical and biochemical cues of the external environment. These changes are assisted by a dynamic actin cytoskeleton–membrane interface connected to surface receptors that will trigger signaling cascades. In recent years, the development of synthetic immune environments has allowed to investigate the impact of the external environment in the immune cell response. In this direction, the bioengineering of functional topographical features should make it possible to establish how membrane morphology modulates specific cellular functions in DCs. Herein, the engineering of one-dimensional nanostructured SiO2 surfaces by soft-nanoimprint lithography to manipulate the membrane morphology of ex vivo human DCs is reported. Super-resolution microscopy and live-cell imaging studies show that vertical pillar topographies promote the patterning and stabilization of adhesive actin-enriched structures in DCs. Furthermore, vertical topographies stimulate the spatial organization of innate immune receptors and regulate the Syk- and ERK-mediated signaling pathways across the cell membrane. In conclusion, engineered SiO<sub>2</sub> surface topographies can modulate the cellular response of ex vivo human immune cells by imposing local plasma membrane nano-deformations.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"3 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141754106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Small SciencePub Date : 2024-07-12DOI: 10.1002/smsc.202400216
Songqing Zhang, Khalil As’Ham, Han Wang, Wenwu Pan, Ibrahim Al-Ani, Huijia Luo, Junliang Liu, Yongling Ren, Haroldo Takashi Hattori, Andrey E. Miroshnichenko, Lorenzo Faraone, Wen Lei
{"title":"Microcavity-Enhanced Polarization Photodetection in Antimony Selenide Nanotube-Based Near-Infrared Photodetectors","authors":"Songqing Zhang, Khalil As’Ham, Han Wang, Wenwu Pan, Ibrahim Al-Ani, Huijia Luo, Junliang Liu, Yongling Ren, Haroldo Takashi Hattori, Andrey E. Miroshnichenko, Lorenzo Faraone, Wen Lei","doi":"10.1002/smsc.202400216","DOIUrl":"https://doi.org/10.1002/smsc.202400216","url":null,"abstract":"This study presents the polarization photodetection enhancement in Sb<sub>2</sub>Se<sub>3</sub> nanotube (NT)-based near-infrared (NIR) photodetectors through simulation-based and experimental investigations. High-quality single-crystal Sb<sub>2</sub>Se<sub>3</sub> NTs are grown <i>via</i> chemical vapor deposition and characterized by using multiple techniques. The optical simulation reveals a remarkable difference in the light absorption ratio (specifically, absorption along the NT/nanowire (NW) against absorption perpendicular to the NT/NW) between Sb<sub>2</sub>Se<sub>3</sub> NT and NW of the same size in the NIR region. The complementary photodetection experiments present that the fabricated Sb<sub>2</sub>Se<sub>3</sub> NT photodetector demonstrates enhanced polarization photodetection in the NIR range, as indicated by a significantly increased dichroic ratio (3.03 at 850 nm) compared to that of similar-sized NW counterpart (1.81 at 850 nm). Additionally, the Sb<sub>2</sub>Se<sub>3</sub> NT photodetector exhibits exceptional performance, with a high responsivity of 4.18 A W<sup>−1</sup> and specific detectivity of 8.94 × 10<sup>10</sup> Jones under 830 nm light illumination. This study provides a comprehensive understanding of the microcavity resonance effect and its role in polarization photodetection enhancement, highlighting the potential of self-assembled Sb<sub>2</sub>Se<sub>3</sub> NTs in high-performance near-infrared polarized photodetection and other relevant applications.","PeriodicalId":29791,"journal":{"name":"Small Science","volume":"27 1","pages":""},"PeriodicalIF":12.7,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}