Radiology-Artificial Intelligence最新文献

筛选
英文 中文
AI for Detection of Tuberculosis: Implications for Global Health. 人工智能检测结核病:对全球健康的影响。
IF 9.8
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230327
Eui Jin Hwang, Won Gi Jeong, Pierre-Marie David, Matthew Arentz, Morten Ruhwald, Soon Ho Yoon
{"title":"AI for Detection of Tuberculosis: Implications for Global Health.","authors":"Eui Jin Hwang, Won Gi Jeong, Pierre-Marie David, Matthew Arentz, Morten Ruhwald, Soon Ho Yoon","doi":"10.1148/ryai.230327","DOIUrl":"10.1148/ryai.230327","url":null,"abstract":"<p><p>Tuberculosis, which primarily affects developing countries, remains a significant global health concern. Since the 2010s, the role of chest radiography has expanded in tuberculosis triage and screening beyond its traditional complementary role in the diagnosis of tuberculosis. Computer-aided diagnosis (CAD) systems for tuberculosis detection on chest radiographs have recently made substantial progress in diagnostic performance, thanks to deep learning technologies. The current performance of CAD systems for tuberculosis has approximated that of human experts, presenting a potential solution to the shortage of human readers to interpret chest radiographs in low- or middle-income, high-tuberculosis-burden countries. This article provides a critical appraisal of developmental process reporting in extant CAD software for tuberculosis, based on the Checklist for Artificial Intelligence in Medical Imaging. It also explores several considerations to scale up CAD solutions, encompassing manufacturer-independent CAD validation, economic and political aspects, and ethical concerns, as well as the potential for broadening radiography-based diagnosis to other nontuberculosis diseases. Collectively, CAD for tuberculosis will emerge as a representative deep learning application, catalyzing advances in global health and health equity. <b>Keywords:</b> Computer-aided Diagnosis (CAD), Conventional Radiography, Thorax, Lung, Machine Learning <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982823/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image Quality and Diagnostic Performance of Low-Dose Liver CT with Deep Learning Reconstruction versus Standard-Dose CT. 采用深度学习重建技术的低剂量肝脏 CT 与标准剂量 CT 的图像质量和诊断性能对比。
IF 9.8
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230192
Dong Ho Lee, Jeong Min Lee, Chang Hee Lee, Saif Afat, Ahmed Othman
{"title":"Image Quality and Diagnostic Performance of Low-Dose Liver CT with Deep Learning Reconstruction versus Standard-Dose CT.","authors":"Dong Ho Lee, Jeong Min Lee, Chang Hee Lee, Saif Afat, Ahmed Othman","doi":"10.1148/ryai.230192","DOIUrl":"10.1148/ryai.230192","url":null,"abstract":"<p><p>Purpose To compare the image quality and diagnostic capability in detecting malignant liver tumors of low-dose CT (LDCT, 33% dose) with deep learning-based denoising (DLD) and standard-dose CT (SDCT, 100% dose) with model-based iterative reconstruction (MBIR). Materials and Methods In this prospective, multicenter, noninferiority study, individuals referred for liver CT scans were enrolled from three tertiary referral hospitals between February 2021 and August 2022. All liver CT scans were conducted using a dual-source scanner with the dose split into tubes A (67% dose) and B (33% dose). Blended images from tubes A and B were created using MBIR to produce SDCT images, whereas LDCT images used data from tube B and were reconstructed with DLD. The noise in liver images was measured and compared between imaging techniques. The diagnostic performance of each technique in detecting malignant liver tumors was evaluated by three independent radiologists using jackknife alternative free-response receiver operating characteristic analysis. Noninferiority of LDCT compared with SDCT was declared when the lower limit of the 95% CI for the difference in figure of merit (FOM) was greater than -0.10. Results A total of 296 participants (196 men, 100 women; mean age, 60.5 years ± 13.3 [SD]) were included. The mean noise level in the liver was significantly lower for LDCT (10.1) compared with SDCT (10.7) (<i>P</i> < .001). Diagnostic performance was assessed in 246 participants (108 malignant tumors in 90 participants). The reader-averaged FOM was 0.880 for SDCT and 0.875 for LDCT (<i>P</i> = .35). The difference fell within the noninferiority margin (difference, -0.005 [95% CI: -0.024, 0.012]). Conclusion Compared with SDCT with MBIR, LDCT using 33% of the standard radiation dose had reduced image noise and comparable diagnostic performance in detecting malignant liver tumors. <b>Keywords:</b> CT, Abdomen/GI, Liver, Comparative Studies, Diagnosis, Reconstruction Algorithms Clinical trial registration no. NCT05804799 © RSNA, 2024 <i>Supplemental material is available for this article.</i></p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982822/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finding the Pieces to Treat the Whole: Using Radiomics to Identify Tumor Habitats. 寻找治疗整体的碎片:利用放射组学识别肿瘤栖息地。
IF 9.8
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230547
Hersh Sagreiya
{"title":"Finding the Pieces to Treat the Whole: Using Radiomics to Identify Tumor Habitats.","authors":"Hersh Sagreiya","doi":"10.1148/ryai.230547","DOIUrl":"10.1148/ryai.230547","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139984066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of a Categorical AI System for Digital Breast Tomosynthesis on Breast Cancer Interpretation by Both General Radiologists and Breast Imaging Specialists. 数字乳腺断层合成的分类人工智能系统对普通放射医师和乳腺成像专科医师乳腺癌判读的影响。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230137
Jiye G Kim, Bryan Haslam, Abdul Rahman Diab, Ashwin Sakhare, Giorgia Grisot, Hyunkwang Lee, Jacqueline Holt, Christoph I Lee, William Lotter, A Gregory Sorensen
{"title":"Impact of a Categorical AI System for Digital Breast Tomosynthesis on Breast Cancer Interpretation by Both General Radiologists and Breast Imaging Specialists.","authors":"Jiye G Kim, Bryan Haslam, Abdul Rahman Diab, Ashwin Sakhare, Giorgia Grisot, Hyunkwang Lee, Jacqueline Holt, Christoph I Lee, William Lotter, A Gregory Sorensen","doi":"10.1148/ryai.230137","DOIUrl":"10.1148/ryai.230137","url":null,"abstract":"<p><p>Purpose To evaluate performance improvements of general radiologists and breast imaging specialists when interpreting a set of diverse digital breast tomosynthesis (DBT) examinations with the aid of a custom-built categorical artificial intelligence (AI) system. Materials and Methods A fully balanced multireader, multicase reader study was conducted to compare the performance of 18 radiologists (nine general radiologists and nine breast imaging specialists) reading 240 retrospectively collected screening DBT mammograms (mean patient age, 59.8 years ± 11.3 [SD]; 100% women), acquired between August 2016 and March 2019, with and without the aid of a custom-built categorical AI system. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity across general radiologists and breast imaging specialists reading with versus without AI were assessed. Reader performance was also analyzed as a function of breast cancer characteristics and patient subgroups. Results Every radiologist demonstrated improved interpretation performance when reading with versus without AI, with an average AUC of 0.93 versus 0.87, demonstrating a difference in AUC of 0.06 (95% CI: 0.04, 0.08; <i>P</i> < .001). Improvement in AUC was observed for both general radiologists (difference of 0.08; <i>P</i> < .001) and breast imaging specialists (difference of 0.04; <i>P</i> < .001) and across all cancer characteristics (lesion type, lesion size, and pathology) and patient subgroups (race and ethnicity, age, and breast density) examined. Conclusion A categorical AI system helped improve overall radiologist interpretation performance of DBT screening mammograms for both general radiologists and breast imaging specialists and across various patient subgroups and breast cancer characteristics. <b>Keywords:</b> Computer-aided Diagnosis, Screening Mammography, Digital Breast Tomosynthesis, Breast Cancer, Screening, Convolutional Neural Network (CNN), Artificial Intelligence <i>Supplemental material is available for this article</i>. © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Validation of a Deep Learning Model to Reduce the Interference of Rectal Artifacts in MRI-based Prostate Cancer Diagnosis. 深度学习模型的开发与验证:在基于核磁共振成像的前列腺癌诊断中减少直肠伪影的干扰》(Deep Learning Model of Development and Validation of a Deep Learning Model to Reduce Rectal Artifacts in MRI-based Prostate Cancer Diagnosis)。
IF 9.8
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230362
Lei Hu, Xiangyu Guo, Dawei Zhou, Zhen Wang, Lisong Dai, Liang Li, Ying Li, Tian Zhang, Haining Long, Chengxin Yu, Zhen-Wei Shi, Chu Han, Cheng Lu, Jungong Zhao, Yuehua Li, Yunfei Zha, Zaiyi Liu
{"title":"Development and Validation of a Deep Learning Model to Reduce the Interference of Rectal Artifacts in MRI-based Prostate Cancer Diagnosis.","authors":"Lei Hu, Xiangyu Guo, Dawei Zhou, Zhen Wang, Lisong Dai, Liang Li, Ying Li, Tian Zhang, Haining Long, Chengxin Yu, Zhen-Wei Shi, Chu Han, Cheng Lu, Jungong Zhao, Yuehua Li, Yunfei Zha, Zaiyi Liu","doi":"10.1148/ryai.230362","DOIUrl":"10.1148/ryai.230362","url":null,"abstract":"<p><p>Purpose To develop an MRI-based model for clinically significant prostate cancer (csPCa) diagnosis that can resist rectal artifact interference. Materials and Methods This retrospective study included 2203 male patients with prostate lesions who underwent biparametric MRI and biopsy between January 2019 and June 2023. Targeted adversarial training with proprietary adversarial samples (TPAS) strategy was proposed to enhance model resistance against rectal artifacts. The automated csPCa diagnostic models trained with and without TPAS were compared using multicenter validation datasets. The impact of rectal artifacts on the diagnostic performance of each model at the patient and lesion levels was compared using the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPRC). The AUC between models was compared using the DeLong test, and the AUPRC was compared using the bootstrap method. Results The TPAS model exhibited diagnostic performance improvements of 6% at the patient level (AUC: 0.87 vs 0.81, <i>P</i> < .001) and 7% at the lesion level (AUPRC: 0.84 vs 0.77, <i>P</i> = .007) compared with the control model. The TPAS model demonstrated less performance decline in the presence of rectal artifact-pattern adversarial noise than the control model (ΔAUC: -17% vs -19%, ΔAUPRC: -18% vs -21%). The TPAS model performed better than the control model in patients with moderate (AUC: 0.79 vs 0.73, AUPRC: 0.68 vs 0.61) and severe (AUC: 0.75 vs 0.57, AUPRC: 0.69 vs 0.59) artifacts. Conclusion This study demonstrates that the TPAS model can reduce rectal artifact interference in MRI-based csPCa diagnosis, thereby improving its performance in clinical applications. <b>Keywords:</b> MR-Diffusion-weighted Imaging, Urinary, Prostate, Comparative Studies, Diagnosis, Transfer Learning Clinical trial registration no. ChiCTR23000069832 <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expert-centered Evaluation of Deep Learning Algorithms for Brain Tumor Segmentation. 以专家为中心评估用于脑肿瘤分割的深度学习算法。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-01-01 DOI: 10.1148/ryai.220231
Katharina V Hoebel, Christopher P Bridge, Sara Ahmed, Oluwatosin Akintola, Caroline Chung, Raymond Y Huang, Jason M Johnson, Albert Kim, K Ina Ly, Ken Chang, Jay Patel, Marco Pinho, Tracy T Batchelor, Bruce R Rosen, Elizabeth R Gerstner, Jayashree Kalpathy-Cramer
{"title":"Expert-centered Evaluation of Deep Learning Algorithms for Brain Tumor Segmentation.","authors":"Katharina V Hoebel, Christopher P Bridge, Sara Ahmed, Oluwatosin Akintola, Caroline Chung, Raymond Y Huang, Jason M Johnson, Albert Kim, K Ina Ly, Ken Chang, Jay Patel, Marco Pinho, Tracy T Batchelor, Bruce R Rosen, Elizabeth R Gerstner, Jayashree Kalpathy-Cramer","doi":"10.1148/ryai.220231","DOIUrl":"10.1148/ryai.220231","url":null,"abstract":"<p><p>Purpose To present results from a literature survey on practices in deep learning segmentation algorithm evaluation and perform a study on expert quality perception of brain tumor segmentation. Materials and Methods A total of 180 articles reporting on brain tumor segmentation algorithms were surveyed for the reported quality evaluation. Additionally, ratings of segmentation quality on a four-point scale were collected from medical professionals for 60 brain tumor segmentation cases. Results Of the surveyed articles, Dice score, sensitivity, and Hausdorff distance were the most popular metrics to report segmentation performance. Notably, only 2.8% of the articles included clinical experts' evaluation of segmentation quality. The experimental results revealed a low interrater agreement (Krippendorff α, 0.34) in experts' segmentation quality perception. Furthermore, the correlations between the ratings and commonly used quantitative quality metrics were low (Kendall tau between Dice score and mean rating, 0.23; Kendall tau between Hausdorff distance and mean rating, 0.51), with large variability among the experts. Conclusion The results demonstrate that quality ratings are prone to variability due to the ambiguity of tumor boundaries and individual perceptual differences, and existing metrics do not capture the clinical perception of segmentation quality. <b>Keywords:</b> Brain Tumor Segmentation, Deep Learning Algorithms, Glioblastoma, Cancer, Machine Learning Clinical trial registration nos. NCT00756106 and NCT00662506 <i>Supplemental material is available for this article.</i> © RSNA, 2023.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data Liberation and Crowdsourcing in Medical Research: The Intersection of Collective and Artificial Intelligence. 医学研究中的数据解放与众包:集体智能与人工智能的交叉。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-01-01 DOI: 10.1148/ryai.230006
Jefferson R Wilson, Luciano M Prevedello, Christopher D Witiw, Adam E Flanders, Errol Colak
{"title":"Data Liberation and Crowdsourcing in Medical Research: The Intersection of Collective and Artificial Intelligence.","authors":"Jefferson R Wilson, Luciano M Prevedello, Christopher D Witiw, Adam E Flanders, Errol Colak","doi":"10.1148/ryai.230006","DOIUrl":"10.1148/ryai.230006","url":null,"abstract":"<p><p>In spite of an exponential increase in the volume of medical data produced globally, much of these data are inaccessible to those who might best use them to develop improved health care solutions through the application of advanced analytics such as artificial intelligence. Data liberation and crowdsourcing represent two distinct but interrelated approaches to bridging existing data silos and accelerating the pace of innovation internationally. In this article, we examine these concepts in the context of medical artificial intelligence research, summarizing their potential benefits, identifying potential pitfalls, and ultimately making a case for their expanded use going forward. A practical example of a crowdsourced competition using an international medical imaging dataset is provided. <b>Keywords:</b> Artificial Intelligence, Data Liberation, Crowdsourcing © RSNA, 2023.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Accuracy of Radiomics in Predicting IDH Mutation Status in Diffuse Gliomas: A Bivariate Meta-Analysis. 放射组学预测弥漫性胶质瘤 IDH 突变状态的准确性:双变量元分析
IF 9.8
Radiology-Artificial Intelligence Pub Date : 2024-01-01 DOI: 10.1148/ryai.220257
Gianfranco Di Salle, Lorenzo Tumminello, Maria Elena Laino, Sherif Shalaby, Gayane Aghakhanyan, Salvatore Claudio Fanni, Maria Febi, Jorge Eduardo Shortrede, Mario Miccoli, Lorenzo Faggioni, Mirco Cosottini, Emanuele Neri
{"title":"Accuracy of Radiomics in Predicting <i>IDH</i> Mutation Status in Diffuse Gliomas: A Bivariate Meta-Analysis.","authors":"Gianfranco Di Salle, Lorenzo Tumminello, Maria Elena Laino, Sherif Shalaby, Gayane Aghakhanyan, Salvatore Claudio Fanni, Maria Febi, Jorge Eduardo Shortrede, Mario Miccoli, Lorenzo Faggioni, Mirco Cosottini, Emanuele Neri","doi":"10.1148/ryai.220257","DOIUrl":"10.1148/ryai.220257","url":null,"abstract":"<p><p>Purpose To perform a systematic review and meta-analysis assessing the predictive accuracy of radiomics in the noninvasive determination of isocitrate dehydrogenase <i>(IDH</i>) status in grade 4 and lower-grade diffuse gliomas. Materials and Methods A systematic search was performed in the PubMed, Scopus, Embase, Web of Science, and Cochrane Library databases for relevant articles published between January 1, 2010, and July 7, 2021. Pooled sensitivity and specificity across studies were estimated. Risk of bias was evaluated using Quality Assessment of Diagnostic Accuracy Studies-2, and methods were evaluated using the radiomics quality score (RQS). Additional subgroup analyses were performed according to tumor grade, RQS, and number of sequences used (PROSPERO ID: CRD42021268958). Results Twenty-six studies that included 3280 patients were included for analysis. The pooled sensitivity and specificity of radiomics for the detection of <i>IDH</i> mutation were 79% (95% CI: 76, 83) and 80% (95% CI: 76, 83), respectively. Low RQS scores were found overall for the included works. Subgroup analyses showed lower false-positive rates in very low RQS studies (RQS < 6) (meta-regression, <i>z</i> = -1.9; <i>P</i> = .02) compared with adequate RQS studies. No substantial differences were found in pooled sensitivity and specificity for the pure grade 4 gliomas group compared with the all-grade gliomas group (81% and 86% vs 79% and 79%, respectively) and for studies using single versus multiple sequences (80% and 77% vs 79% and 82%, respectively). Conclusion The pooled data showed that radiomics achieved good accuracy performance in distinguishing <i>IDH</i> mutation status in patients with grade 4 and lower-grade diffuse gliomas. The overall methodologic quality (RQS) was low and introduced potential bias. <b>Keywords:</b> Neuro-Oncology, Radiomics, Integration, Application Domain, Glioblastoma, IDH Mutation, Radiomics Quality Scoring <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831518/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of the Winning Algorithms of the RSNA 2022 Cervical Spine Fracture Detection Challenge. RSNA 2022 年颈椎骨折检测挑战赛获奖算法的性能。
IF 9.8
Radiology-Artificial Intelligence Pub Date : 2024-01-01 DOI: 10.1148/ryai.230256
Ghee Rye Lee, Adam E Flanders, Tyler Richards, Felipe Kitamura, Errol Colak, Hui Ming Lin, Robyn L Ball, Jason Talbott, Luciano M Prevedello
{"title":"Performance of the Winning Algorithms of the RSNA 2022 Cervical Spine Fracture Detection Challenge.","authors":"Ghee Rye Lee, Adam E Flanders, Tyler Richards, Felipe Kitamura, Errol Colak, Hui Ming Lin, Robyn L Ball, Jason Talbott, Luciano M Prevedello","doi":"10.1148/ryai.230256","DOIUrl":"10.1148/ryai.230256","url":null,"abstract":"<p><p>Purpose To evaluate and report the performance of the winning algorithms of the Radiological Society of North America Cervical Spine Fracture AI Challenge. Materials and Methods The competition was open to the public on Kaggle from July 28 to October 27, 2022. A sample of 3112 CT scans with and without cervical spine fractures (CSFx) were assembled from multiple sites (12 institutions across six continents) and prepared for the competition. The test set had 1093 scans (private test set: <i>n</i> = 789; mean age, 53.40 years ± 22.86 [SD]; 509 males; public test set: <i>n</i> = 304; mean age, 52.51 years ± 20.73; 189 males) and 847 fractures. The eight top-performing artificial intelligence (AI) algorithms were retrospectively evaluated, and the area under the receiver operating characteristic curve (AUC) value, F1 score, sensitivity, and specificity were calculated. Results A total of 1108 contestants composing 883 teams worldwide participated in the competition. The top eight AI models showed high performance, with a mean AUC value of 0.96 (95% CI: 0.95, 0.96), mean F1 score of 90% (95% CI: 90%, 91%), mean sensitivity of 88% (95% Cl: 86%, 90%), and mean specificity of 94% (95% CI: 93%, 96%). The highest values reported for previous models were an AUC of 0.85, F1 score of 81%, sensitivity of 76%, and specificity of 97%. Conclusion The competition successfully facilitated the development of AI models that could detect and localize CSFx on CT scans with high performance outcomes, which appear to exceed known values of previously reported models. Further study is needed to evaluate the generalizability of these models in a clinical environment. <b>Keywords:</b> Cervical Spine, Fracture Detection, Machine Learning, Artificial Intelligence Algorithms, CT, Head/Neck <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831508/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139088849","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Deep Learning Pipeline for Assessing Ventricular Volumes from a Cardiac MRI Registry of Patients with Single Ventricle Physiology. 从单室生理学患者心脏磁共振成像注册表中评估心室容积的深度学习管道。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-01-01 DOI: 10.1148/ryai.230132
Tina Yao, Nicole St Clair, Gabriel F Miller, Adam L Dorfman, Mark A Fogel, Sunil Ghelani, Rajesh Krishnamurthy, Christopher Z Lam, Michael Quail, Joshua D Robinson, David Schidlow, Timothy C Slesnick, Justin Weigand, Jennifer A Steeden, Rahul H Rathod, Vivek Muthurangu
{"title":"A Deep Learning Pipeline for Assessing Ventricular Volumes from a Cardiac MRI Registry of Patients with Single Ventricle Physiology.","authors":"Tina Yao, Nicole St Clair, Gabriel F Miller, Adam L Dorfman, Mark A Fogel, Sunil Ghelani, Rajesh Krishnamurthy, Christopher Z Lam, Michael Quail, Joshua D Robinson, David Schidlow, Timothy C Slesnick, Justin Weigand, Jennifer A Steeden, Rahul H Rathod, Vivek Muthurangu","doi":"10.1148/ryai.230132","DOIUrl":"10.1148/ryai.230132","url":null,"abstract":"<p><p>Purpose To develop an end-to-end deep learning (DL) pipeline for automated ventricular segmentation of cardiac MRI data from a multicenter registry of patients with Fontan circulation (Fontan Outcomes Registry Using CMR Examinations [FORCE]). Materials and Methods This retrospective study used 250 cardiac MRI examinations (November 2007-December 2022) from 13 institutions for training, validation, and testing. The pipeline contained three DL models: a classifier to identify short-axis cine stacks and two U-Net 3+ models for image cropping and segmentation. The automated segmentations were evaluated on the test set (<i>n</i> = 50) by using the Dice score. Volumetric and functional metrics derived from DL and ground truth manual segmentations were compared using Bland-Altman and intraclass correlation analysis. The pipeline was further qualitatively evaluated on 475 unseen examinations. Results There were acceptable limits of agreement (LOA) and minimal biases between the ground truth and DL end-diastolic volume (EDV) (bias: -0.6 mL/m<sup>2</sup>, LOA: -20.6 to 19.5 mL/m<sup>2</sup>) and end-systolic volume (ESV) (bias: -1.1 mL/m<sup>2</sup>, LOA: -18.1 to 15.9 mL/m<sup>2</sup>), with high intraclass correlation coefficients (ICCs > 0.97) and Dice scores (EDV, 0.91 and ESV, 0.86). There was moderate agreement for ventricular mass (bias: -1.9 g/m<sup>2</sup>, LOA: -17.3 to 13.5 g/m<sup>2</sup>) and an ICC of 0.94. There was also acceptable agreement for stroke volume (bias: 0.6 mL/m<sup>2</sup>, LOA: -17.2 to 18.3 mL/m<sup>2</sup>) and ejection fraction (bias: 0.6%, LOA: -12.2% to 13.4%), with high ICCs (>0.81). The pipeline achieved satisfactory segmentation in 68% of the 475 unseen examinations, while 26% needed minor adjustments, 5% needed major adjustments, and in 0.4%, the cropping model failed. Conclusion The DL pipeline can provide fast standardized segmentation for patients with single ventricle physiology across multiple centers. This pipeline can be applied to all cardiac MRI examinations in the FORCE registry. <b>Keywords:</b> Cardiac, Adults and Pediatrics, MR Imaging, Congenital, Volume Analysis, Segmentation, Quantification <i>Supplemental material is available for this article.</i> © RSNA, 2023.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831511/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139080954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信