Radiology-Artificial Intelligence最新文献

筛选
英文 中文
Denoising Multiphase Functional Cardiac CT Angiography Using Deep Learning and Synthetic Data. 利用深度学习和合成数据对多相功能性心脏 CT 血管造影进行去噪。
IF 9.8
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230153
Veit Sandfort, Martin J Willemink, Marina Codari, Domenico Mastrodicasa, Dominik Fleischmann
{"title":"Denoising Multiphase Functional Cardiac CT Angiography Using Deep Learning and Synthetic Data.","authors":"Veit Sandfort, Martin J Willemink, Marina Codari, Domenico Mastrodicasa, Dominik Fleischmann","doi":"10.1148/ryai.230153","DOIUrl":"10.1148/ryai.230153","url":null,"abstract":"<p><p>Coronary CT angiography is increasingly used for cardiac diagnosis. Dose modulation techniques can reduce radiation dose, but resulting functional images are noisy and challenging for functional analysis. This retrospective study describes and evaluates a deep learning method for denoising functional cardiac imaging, taking advantage of multiphase information in a three-dimensional convolutional neural network. Coronary CT angiograms (<i>n</i> = 566) were used to derive synthetic data for training. Deep learning-based image denoising was compared with unprocessed images and a standard noise reduction algorithm (block-matching and three-dimensional filtering [BM3D]). Noise and signal-to-noise ratio measurements, as well as expert evaluation of image quality, were performed. To validate the use of the denoised images for cardiac quantification, threshold-based segmentation was performed, and results were compared with manual measurements on unprocessed images. Deep learning-based denoised images showed significantly improved noise compared with standard denoising-based images (SD of left ventricular blood pool, 20.3 HU ± 42.5 [SD] vs 33.4 HU ± 39.8 for deep learning-based image denoising vs BM3D; <i>P</i> < .0001). Expert evaluations of image quality were significantly higher in deep learning-based denoised images compared with standard denoising. Semiautomatic left ventricular size measurements on deep learning-based denoised images showed excellent correlation with expert quantification on unprocessed images (intraclass correlation coefficient, 0.97). Deep learning-based denoising using a three-dimensional approach resulted in excellent denoising performance and facilitated valid automatic processing of cardiac functional imaging. <b>Keywords:</b> Cardiac CT Angiography, Deep Learning, Image Denoising <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230153"},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139984065","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The University of California San Francisco Brain Metastases Stereotactic Radiosurgery (UCSF-BMSR) MRI Dataset. 加州大学旧金山分校脑转移立体定向放射外科(UCSF-BMSR)磁共振成像数据集。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230126
Jeffrey D Rudie, Rachit Saluja, David A Weiss, Pierre Nedelec, Evan Calabrese, John B Colby, Benjamin Laguna, John Mongan, Steve Braunstein, Christopher P Hess, Andreas M Rauschecker, Leo P Sugrue, Javier E Villanueva-Meyer
{"title":"The University of California San Francisco Brain Metastases Stereotactic Radiosurgery (UCSF-BMSR) MRI Dataset.","authors":"Jeffrey D Rudie, Rachit Saluja, David A Weiss, Pierre Nedelec, Evan Calabrese, John B Colby, Benjamin Laguna, John Mongan, Steve Braunstein, Christopher P Hess, Andreas M Rauschecker, Leo P Sugrue, Javier E Villanueva-Meyer","doi":"10.1148/ryai.230126","DOIUrl":"10.1148/ryai.230126","url":null,"abstract":"<p><p>\u0000 <i>Supplemental material is available for this article.</i>\u0000 </p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230126"},"PeriodicalIF":8.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
AI for Detection of Tuberculosis: Implications for Global Health. 人工智能检测结核病:对全球健康的影响。
IF 9.8
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230327
Eui Jin Hwang, Won Gi Jeong, Pierre-Marie David, Matthew Arentz, Morten Ruhwald, Soon Ho Yoon
{"title":"AI for Detection of Tuberculosis: Implications for Global Health.","authors":"Eui Jin Hwang, Won Gi Jeong, Pierre-Marie David, Matthew Arentz, Morten Ruhwald, Soon Ho Yoon","doi":"10.1148/ryai.230327","DOIUrl":"10.1148/ryai.230327","url":null,"abstract":"<p><p>Tuberculosis, which primarily affects developing countries, remains a significant global health concern. Since the 2010s, the role of chest radiography has expanded in tuberculosis triage and screening beyond its traditional complementary role in the diagnosis of tuberculosis. Computer-aided diagnosis (CAD) systems for tuberculosis detection on chest radiographs have recently made substantial progress in diagnostic performance, thanks to deep learning technologies. The current performance of CAD systems for tuberculosis has approximated that of human experts, presenting a potential solution to the shortage of human readers to interpret chest radiographs in low- or middle-income, high-tuberculosis-burden countries. This article provides a critical appraisal of developmental process reporting in extant CAD software for tuberculosis, based on the Checklist for Artificial Intelligence in Medical Imaging. It also explores several considerations to scale up CAD solutions, encompassing manufacturer-independent CAD validation, economic and political aspects, and ethical concerns, as well as the potential for broadening radiography-based diagnosis to other nontuberculosis diseases. Collectively, CAD for tuberculosis will emerge as a representative deep learning application, catalyzing advances in global health and health equity. <b>Keywords:</b> Computer-aided Diagnosis (CAD), Conventional Radiography, Thorax, Lung, Machine Learning <i>Supplemental material is available for this article.</i> © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230327"},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982823/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vision Transformer-based Decision Support for Neurosurgical Intervention in Acute Traumatic Brain Injury: Automated Surgical Intervention Support Tool. 基于视觉转换器的急性创伤性脑损伤神经外科干预决策支持:自动外科干预支持工具 (ASIST-TBI)。
IF 9.8
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230088
Christopher W Smith, Armaan K Malhotra, Christopher Hammill, Derek Beaton, Erin M Harrington, Yingshi He, Husain Shakil, Amanda McFarlan, Blair Jones, Hui Ming Lin, François Mathieu, Avery B Nathens, Alun D Ackery, Garrick Mok, Muhammad Mamdani, Shobhit Mathur, Jefferson R Wilson, Robert Moreland, Errol Colak, Christopher D Witiw
{"title":"Vision Transformer-based Decision Support for Neurosurgical Intervention in Acute Traumatic Brain Injury: Automated Surgical Intervention Support Tool.","authors":"Christopher W Smith, Armaan K Malhotra, Christopher Hammill, Derek Beaton, Erin M Harrington, Yingshi He, Husain Shakil, Amanda McFarlan, Blair Jones, Hui Ming Lin, François Mathieu, Avery B Nathens, Alun D Ackery, Garrick Mok, Muhammad Mamdani, Shobhit Mathur, Jefferson R Wilson, Robert Moreland, Errol Colak, Christopher D Witiw","doi":"10.1148/ryai.230088","DOIUrl":"10.1148/ryai.230088","url":null,"abstract":"<p><p>Purpose To develop an automated triage tool to predict neurosurgical intervention for patients with traumatic brain injury (TBI). Materials and Methods A provincial trauma registry was reviewed to retrospectively identify patients with TBI from 2005 to 2022 treated at a specialized Canadian trauma center. Model training, validation, and testing were performed using head CT scans with binary reference standard patient-level labels corresponding to whether the patient received neurosurgical intervention. Performance and accuracy of the model, the Automated Surgical Intervention Support Tool for TBI (ASIST-TBI), were also assessed using a held-out consecutive test set of all patients with TBI presenting to the center between March 2021 and September 2022. Results Head CT scans from 2806 patients with TBI (mean age, 57 years ± 22 [SD]; 1955 [70%] men) were acquired between 2005 and 2021 and used for training, validation, and testing. Consecutive scans from an additional 612 patients (mean age, 61 years ± 22; 443 [72%] men) were used to assess the performance of ASIST-TBI. There was accurate prediction of neurosurgical intervention with an area under the receiver operating characteristic curve (AUC) of 0.92 (95% CI: 0.88, 0.94), accuracy of 87% (491 of 562), sensitivity of 87% (196 of 225), and specificity of 88% (295 of 337) on the test dataset. Performance on the held-out test dataset remained robust with an AUC of 0.89 (95% CI: 0.85, 0.91), accuracy of 84% (517 of 612), sensitivity of 85% (199 of 235), and specificity of 84% (318 of 377). Conclusion A novel deep learning model was developed that could accurately predict the requirement for neurosurgical intervention using acute TBI CT scans. <b>Keywords:</b> CT, Brain/Brain Stem, Surgery, Trauma, Prognosis, Classification, Application Domain, Traumatic Brain Injury, Triage, Machine Learning, Decision Support <i>Supplemental material is available for this article.</i> © RSNA, 2024 See also commentary by Haller in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230088"},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982820/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Image Quality and Diagnostic Performance of Low-Dose Liver CT with Deep Learning Reconstruction versus Standard-Dose CT. 采用深度学习重建技术的低剂量肝脏 CT 与标准剂量 CT 的图像质量和诊断性能对比。
IF 9.8
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230192
Dong Ho Lee, Jeong Min Lee, Chang Hee Lee, Saif Afat, Ahmed Othman
{"title":"Image Quality and Diagnostic Performance of Low-Dose Liver CT with Deep Learning Reconstruction versus Standard-Dose CT.","authors":"Dong Ho Lee, Jeong Min Lee, Chang Hee Lee, Saif Afat, Ahmed Othman","doi":"10.1148/ryai.230192","DOIUrl":"10.1148/ryai.230192","url":null,"abstract":"<p><p>Purpose To compare the image quality and diagnostic capability in detecting malignant liver tumors of low-dose CT (LDCT, 33% dose) with deep learning-based denoising (DLD) and standard-dose CT (SDCT, 100% dose) with model-based iterative reconstruction (MBIR). Materials and Methods In this prospective, multicenter, noninferiority study, individuals referred for liver CT scans were enrolled from three tertiary referral hospitals between February 2021 and August 2022. All liver CT scans were conducted using a dual-source scanner with the dose split into tubes A (67% dose) and B (33% dose). Blended images from tubes A and B were created using MBIR to produce SDCT images, whereas LDCT images used data from tube B and were reconstructed with DLD. The noise in liver images was measured and compared between imaging techniques. The diagnostic performance of each technique in detecting malignant liver tumors was evaluated by three independent radiologists using jackknife alternative free-response receiver operating characteristic analysis. Noninferiority of LDCT compared with SDCT was declared when the lower limit of the 95% CI for the difference in figure of merit (FOM) was greater than -0.10. Results A total of 296 participants (196 men, 100 women; mean age, 60.5 years ± 13.3 [SD]) were included. The mean noise level in the liver was significantly lower for LDCT (10.1) compared with SDCT (10.7) (<i>P</i> < .001). Diagnostic performance was assessed in 246 participants (108 malignant tumors in 90 participants). The reader-averaged FOM was 0.880 for SDCT and 0.875 for LDCT (<i>P</i> = .35). The difference fell within the noninferiority margin (difference, -0.005 [95% CI: -0.024, 0.012]). Conclusion Compared with SDCT with MBIR, LDCT using 33% of the standard radiation dose had reduced image noise and comparable diagnostic performance in detecting malignant liver tumors. <b>Keywords:</b> CT, Abdomen/GI, Liver, Comparative Studies, Diagnosis, Reconstruction Algorithms Clinical trial registration no. NCT05804799 © RSNA, 2024 <i>Supplemental material is available for this article.</i></p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230192"},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982822/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Finding the Pieces to Treat the Whole: Using Radiomics to Identify Tumor Habitats. 寻找治疗整体的碎片:利用放射组学识别肿瘤栖息地。
IF 9.8
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230547
Hersh Sagreiya
{"title":"Finding the Pieces to Treat the Whole: Using Radiomics to Identify Tumor Habitats.","authors":"Hersh Sagreiya","doi":"10.1148/ryai.230547","DOIUrl":"10.1148/ryai.230547","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 2","pages":"e230547"},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139984066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of a Categorical AI System for Digital Breast Tomosynthesis on Breast Cancer Interpretation by Both General Radiologists and Breast Imaging Specialists. 数字乳腺断层合成的分类人工智能系统对普通放射医师和乳腺成像专科医师乳腺癌判读的影响。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230137
Jiye G Kim, Bryan Haslam, Abdul Rahman Diab, Ashwin Sakhare, Giorgia Grisot, Hyunkwang Lee, Jacqueline Holt, Christoph I Lee, William Lotter, A Gregory Sorensen
{"title":"Impact of a Categorical AI System for Digital Breast Tomosynthesis on Breast Cancer Interpretation by Both General Radiologists and Breast Imaging Specialists.","authors":"Jiye G Kim, Bryan Haslam, Abdul Rahman Diab, Ashwin Sakhare, Giorgia Grisot, Hyunkwang Lee, Jacqueline Holt, Christoph I Lee, William Lotter, A Gregory Sorensen","doi":"10.1148/ryai.230137","DOIUrl":"10.1148/ryai.230137","url":null,"abstract":"<p><p>Purpose To evaluate performance improvements of general radiologists and breast imaging specialists when interpreting a set of diverse digital breast tomosynthesis (DBT) examinations with the aid of a custom-built categorical artificial intelligence (AI) system. Materials and Methods A fully balanced multireader, multicase reader study was conducted to compare the performance of 18 radiologists (nine general radiologists and nine breast imaging specialists) reading 240 retrospectively collected screening DBT mammograms (mean patient age, 59.8 years ± 11.3 [SD]; 100% women), acquired between August 2016 and March 2019, with and without the aid of a custom-built categorical AI system. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity across general radiologists and breast imaging specialists reading with versus without AI were assessed. Reader performance was also analyzed as a function of breast cancer characteristics and patient subgroups. Results Every radiologist demonstrated improved interpretation performance when reading with versus without AI, with an average AUC of 0.93 versus 0.87, demonstrating a difference in AUC of 0.06 (95% CI: 0.04, 0.08; <i>P</i> < .001). Improvement in AUC was observed for both general radiologists (difference of 0.08; <i>P</i> < .001) and breast imaging specialists (difference of 0.04; <i>P</i> < .001) and across all cancer characteristics (lesion type, lesion size, and pathology) and patient subgroups (race and ethnicity, age, and breast density) examined. Conclusion A categorical AI system helped improve overall radiologist interpretation performance of DBT screening mammograms for both general radiologists and breast imaging specialists and across various patient subgroups and breast cancer characteristics. <b>Keywords:</b> Computer-aided Diagnosis, Screening Mammography, Digital Breast Tomosynthesis, Breast Cancer, Screening, Convolutional Neural Network (CNN), Artificial Intelligence <i>Supplemental material is available for this article</i>. © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230137"},"PeriodicalIF":8.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982824/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139698499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development and Validation of a Deep Learning Model to Reduce the Interference of Rectal Artifacts in MRI-based Prostate Cancer Diagnosis. 深度学习模型的开发与验证:在基于核磁共振成像的前列腺癌诊断中减少直肠伪影的干扰》(Deep Learning Model of Development and Validation of a Deep Learning Model to Reduce Rectal Artifacts in MRI-based Prostate Cancer Diagnosis)。
IF 9.8
Radiology-Artificial Intelligence Pub Date : 2024-03-01 DOI: 10.1148/ryai.230362
Lei Hu, Xiangyu Guo, Dawei Zhou, Zhen Wang, Lisong Dai, Liang Li, Ying Li, Tian Zhang, Haining Long, Chengxin Yu, Zhen-Wei Shi, Chu Han, Cheng Lu, Jungong Zhao, Yuehua Li, Yunfei Zha, Zaiyi Liu
{"title":"Development and Validation of a Deep Learning Model to Reduce the Interference of Rectal Artifacts in MRI-based Prostate Cancer Diagnosis.","authors":"Lei Hu, Xiangyu Guo, Dawei Zhou, Zhen Wang, Lisong Dai, Liang Li, Ying Li, Tian Zhang, Haining Long, Chengxin Yu, Zhen-Wei Shi, Chu Han, Cheng Lu, Jungong Zhao, Yuehua Li, Yunfei Zha, Zaiyi Liu","doi":"10.1148/ryai.230362","DOIUrl":"10.1148/ryai.230362","url":null,"abstract":"<p><p>Purpose To develop an MRI-based model for clinically significant prostate cancer (csPCa) diagnosis that can resist rectal artifact interference. Materials and Methods This retrospective study included 2203 male patients with prostate lesions who underwent biparametric MRI and biopsy between January 2019 and June 2023. Targeted adversarial training with proprietary adversarial samples (TPAS) strategy was proposed to enhance model resistance against rectal artifacts. The automated csPCa diagnostic models trained with and without TPAS were compared using multicenter validation datasets. The impact of rectal artifacts on the diagnostic performance of each model at the patient and lesion levels was compared using the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPRC). The AUC between models was compared using the DeLong test, and the AUPRC was compared using the bootstrap method. Results The TPAS model exhibited diagnostic performance improvements of 6% at the patient level (AUC: 0.87 vs 0.81, <i>P</i> < .001) and 7% at the lesion level (AUPRC: 0.84 vs 0.77, <i>P</i> = .007) compared with the control model. The TPAS model demonstrated less performance decline in the presence of rectal artifact-pattern adversarial noise than the control model (ΔAUC: -17% vs -19%, ΔAUPRC: -18% vs -21%). The TPAS model performed better than the control model in patients with moderate (AUC: 0.79 vs 0.73, AUPRC: 0.68 vs 0.61) and severe (AUC: 0.75 vs 0.57, AUPRC: 0.69 vs 0.59) artifacts. Conclusion This study demonstrates that the TPAS model can reduce rectal artifact interference in MRI-based csPCa diagnosis, thereby improving its performance in clinical applications. <b>Keywords:</b> MR-Diffusion-weighted Imaging, Urinary, Prostate, Comparative Studies, Diagnosis, Transfer Learning Clinical trial registration no. ChiCTR23000069832 <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230362"},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Expert-centered Evaluation of Deep Learning Algorithms for Brain Tumor Segmentation. 以专家为中心评估用于脑肿瘤分割的深度学习算法。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-01-01 DOI: 10.1148/ryai.220231
Katharina V Hoebel, Christopher P Bridge, Sara Ahmed, Oluwatosin Akintola, Caroline Chung, Raymond Y Huang, Jason M Johnson, Albert Kim, K Ina Ly, Ken Chang, Jay Patel, Marco Pinho, Tracy T Batchelor, Bruce R Rosen, Elizabeth R Gerstner, Jayashree Kalpathy-Cramer
{"title":"Expert-centered Evaluation of Deep Learning Algorithms for Brain Tumor Segmentation.","authors":"Katharina V Hoebel, Christopher P Bridge, Sara Ahmed, Oluwatosin Akintola, Caroline Chung, Raymond Y Huang, Jason M Johnson, Albert Kim, K Ina Ly, Ken Chang, Jay Patel, Marco Pinho, Tracy T Batchelor, Bruce R Rosen, Elizabeth R Gerstner, Jayashree Kalpathy-Cramer","doi":"10.1148/ryai.220231","DOIUrl":"10.1148/ryai.220231","url":null,"abstract":"<p><p>Purpose To present results from a literature survey on practices in deep learning segmentation algorithm evaluation and perform a study on expert quality perception of brain tumor segmentation. Materials and Methods A total of 180 articles reporting on brain tumor segmentation algorithms were surveyed for the reported quality evaluation. Additionally, ratings of segmentation quality on a four-point scale were collected from medical professionals for 60 brain tumor segmentation cases. Results Of the surveyed articles, Dice score, sensitivity, and Hausdorff distance were the most popular metrics to report segmentation performance. Notably, only 2.8% of the articles included clinical experts' evaluation of segmentation quality. The experimental results revealed a low interrater agreement (Krippendorff α, 0.34) in experts' segmentation quality perception. Furthermore, the correlations between the ratings and commonly used quantitative quality metrics were low (Kendall tau between Dice score and mean rating, 0.23; Kendall tau between Hausdorff distance and mean rating, 0.51), with large variability among the experts. Conclusion The results demonstrate that quality ratings are prone to variability due to the ambiguity of tumor boundaries and individual perceptual differences, and existing metrics do not capture the clinical perception of segmentation quality. <b>Keywords:</b> Brain Tumor Segmentation, Deep Learning Algorithms, Glioblastoma, Cancer, Machine Learning Clinical trial registration nos. NCT00756106 and NCT00662506 <i>Supplemental material is available for this article.</i> © RSNA, 2023.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 1","pages":"e220231"},"PeriodicalIF":8.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831514/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139404633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Data Liberation and Crowdsourcing in Medical Research: The Intersection of Collective and Artificial Intelligence. 医学研究中的数据解放与众包:集体智能与人工智能的交叉。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-01-01 DOI: 10.1148/ryai.230006
Jefferson R Wilson, Luciano M Prevedello, Christopher D Witiw, Adam E Flanders, Errol Colak
{"title":"Data Liberation and Crowdsourcing in Medical Research: The Intersection of Collective and Artificial Intelligence.","authors":"Jefferson R Wilson, Luciano M Prevedello, Christopher D Witiw, Adam E Flanders, Errol Colak","doi":"10.1148/ryai.230006","DOIUrl":"10.1148/ryai.230006","url":null,"abstract":"<p><p>In spite of an exponential increase in the volume of medical data produced globally, much of these data are inaccessible to those who might best use them to develop improved health care solutions through the application of advanced analytics such as artificial intelligence. Data liberation and crowdsourcing represent two distinct but interrelated approaches to bridging existing data silos and accelerating the pace of innovation internationally. In this article, we examine these concepts in the context of medical artificial intelligence research, summarizing their potential benefits, identifying potential pitfalls, and ultimately making a case for their expanded use going forward. A practical example of a crowdsourced competition using an international medical imaging dataset is provided. <b>Keywords:</b> Artificial Intelligence, Data Liberation, Crowdsourcing © RSNA, 2023.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 1","pages":"e230006"},"PeriodicalIF":8.1,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10831522/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信