Jeffrey D Rudie, Rachit Saluja, David A Weiss, Pierre Nedelec, Evan Calabrese, John B Colby, Benjamin Laguna, John Mongan, Steve Braunstein, Christopher P Hess, Andreas M Rauschecker, Leo P Sugrue, Javier E Villanueva-Meyer
{"title":"The University of California San Francisco Brain Metastases Stereotactic Radiosurgery (UCSF-BMSR) MRI Dataset.","authors":"Jeffrey D Rudie, Rachit Saluja, David A Weiss, Pierre Nedelec, Evan Calabrese, John B Colby, Benjamin Laguna, John Mongan, Steve Braunstein, Christopher P Hess, Andreas M Rauschecker, Leo P Sugrue, Javier E Villanueva-Meyer","doi":"10.1148/ryai.230126","DOIUrl":"10.1148/ryai.230126","url":null,"abstract":"<p><p>\u0000 <i>Supplemental material is available for this article.</i>\u0000 </p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230126"},"PeriodicalIF":8.1,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982817/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139913647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher W Smith, Armaan K Malhotra, Christopher Hammill, Derek Beaton, Erin M Harrington, Yingshi He, Husain Shakil, Amanda McFarlan, Blair Jones, Hui Ming Lin, François Mathieu, Avery B Nathens, Alun D Ackery, Garrick Mok, Muhammad Mamdani, Shobhit Mathur, Jefferson R Wilson, Robert Moreland, Errol Colak, Christopher D Witiw
{"title":"Finding the Pieces to Treat the Whole: Using Radiomics to Identify Tumor Habitats.","authors":"Hersh Sagreiya","doi":"10.1148/ryai.230547","DOIUrl":"10.1148/ryai.230547","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":"6 2","pages":"e230547"},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10982906/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139984066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiye G Kim, Bryan Haslam, Abdul Rahman Diab, Ashwin Sakhare, Giorgia Grisot, Hyunkwang Lee, Jacqueline Holt, Christoph I Lee, William Lotter, A Gregory Sorensen
{"title":"Development and Validation of a Deep Learning Model to Reduce the Interference of Rectal Artifacts in MRI-based Prostate Cancer Diagnosis.","authors":"Lei Hu, Xiangyu Guo, Dawei Zhou, Zhen Wang, Lisong Dai, Liang Li, Ying Li, Tian Zhang, Haining Long, Chengxin Yu, Zhen-Wei Shi, Chu Han, Cheng Lu, Jungong Zhao, Yuehua Li, Yunfei Zha, Zaiyi Liu","doi":"10.1148/ryai.230362","DOIUrl":"10.1148/ryai.230362","url":null,"abstract":"<p><p>Purpose To develop an MRI-based model for clinically significant prostate cancer (csPCa) diagnosis that can resist rectal artifact interference. Materials and Methods This retrospective study included 2203 male patients with prostate lesions who underwent biparametric MRI and biopsy between January 2019 and June 2023. Targeted adversarial training with proprietary adversarial samples (TPAS) strategy was proposed to enhance model resistance against rectal artifacts. The automated csPCa diagnostic models trained with and without TPAS were compared using multicenter validation datasets. The impact of rectal artifacts on the diagnostic performance of each model at the patient and lesion levels was compared using the area under the receiver operating characteristic curve (AUC) and the area under the precision-recall curve (AUPRC). The AUC between models was compared using the DeLong test, and the AUPRC was compared using the bootstrap method. Results The TPAS model exhibited diagnostic performance improvements of 6% at the patient level (AUC: 0.87 vs 0.81, <i>P</i> < .001) and 7% at the lesion level (AUPRC: 0.84 vs 0.77, <i>P</i> = .007) compared with the control model. The TPAS model demonstrated less performance decline in the presence of rectal artifact-pattern adversarial noise than the control model (ΔAUC: -17% vs -19%, ΔAUPRC: -18% vs -21%). The TPAS model performed better than the control model in patients with moderate (AUC: 0.79 vs 0.73, AUPRC: 0.68 vs 0.61) and severe (AUC: 0.75 vs 0.57, AUPRC: 0.69 vs 0.59) artifacts. Conclusion This study demonstrates that the TPAS model can reduce rectal artifact interference in MRI-based csPCa diagnosis, thereby improving its performance in clinical applications. <b>Keywords:</b> MR-Diffusion-weighted Imaging, Urinary, Prostate, Comparative Studies, Diagnosis, Transfer Learning Clinical trial registration no. ChiCTR23000069832 <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230362"},"PeriodicalIF":9.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985636/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140040503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katharina V Hoebel, Christopher P Bridge, Sara Ahmed, Oluwatosin Akintola, Caroline Chung, Raymond Y Huang, Jason M Johnson, Albert Kim, K Ina Ly, Ken Chang, Jay Patel, Marco Pinho, Tracy T Batchelor, Bruce R Rosen, Elizabeth R Gerstner, Jayashree Kalpathy-Cramer