Radiology-Artificial Intelligence最新文献

筛选
英文 中文
High-performance Open-source AI for Breast Cancer Detection and Localization in MRI. 用于MRI乳腺癌检测与定位的高性能开源AI。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2025-06-25 DOI: 10.1148/ryai.240550
Lukas Hirsch, Elizabeth J Sutton, Yu Huang, Beliz Kayis, Mary Hughes, Danny Martinez, Hernan A Makse, Lucas C Parra
{"title":"High-performance Open-source AI for Breast Cancer Detection and Localization in MRI.","authors":"Lukas Hirsch, Elizabeth J Sutton, Yu Huang, Beliz Kayis, Mary Hughes, Danny Martinez, Hernan A Makse, Lucas C Parra","doi":"10.1148/ryai.240550","DOIUrl":"https://doi.org/10.1148/ryai.240550","url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop and evaluate an open-source deep learning model for detection and localization of breast cancer on MRI. Materials and Methods In this retrospective study, a deep learning model for breast cancer detection and localization was trained on the largest breast MRI dataset to date. Data included all breast MRIs conducted at a tertiary cancer center in the United States between 2002 and 2019. The model was validated on sagittal MRIs from the primary site (<i>n</i> = 6,615 breasts). Generalizability was assessed by evaluating model performance on axial data from the primary site (<i>n</i> = 7,058 breasts) and a second clinical site (<i>n</i> = 1,840 breasts). Results The primary site dataset included 30,672 sagittal MRI examinations (52,598 breasts) from 9,986 female patients (mean [SD] age, 53 [11] years). The model achieved an area under the receiver operating characteristic curve (AUC) of 0.95 for detecting cancer in the primary site. At 90% specificity (5717/6353), model sensitivity was 83% (217/262), which was comparable to historical performance data for radiologists. The model generalized well to axial examinations, achieving an AUC of 0.92 on data from the same clinical site and 0.92 on data from a secondary site. The model accurately located the tumor in 88.5% (232/262) of sagittal images, 92.8% (272/293) of axial images from the primary site, and 87.7% (807/920) of secondary site axial images. Conclusion The model demonstrated state-of-the-art performance on breast cancer detection. Code and weights are openly available to stimulate further development and validation. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240550"},"PeriodicalIF":8.1,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144486216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RadioRAG: Online Retrieval-augmented Generation for Radiology Question Answering. RadioRAG:放射学问答的在线检索增强生成。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2025-06-18 DOI: 10.1148/ryai.240476
Soroosh Tayebi Arasteh, Mahshad Lotfinia, Keno Bressem, Robert Siepmann, Lisa Adams, Dyke Ferber, Christiane Kuhl, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn
{"title":"RadioRAG: Online Retrieval-augmented Generation for Radiology Question Answering.","authors":"Soroosh Tayebi Arasteh, Mahshad Lotfinia, Keno Bressem, Robert Siepmann, Lisa Adams, Dyke Ferber, Christiane Kuhl, Jakob Nikolas Kather, Sven Nebelung, Daniel Truhn","doi":"10.1148/ryai.240476","DOIUrl":"https://doi.org/10.1148/ryai.240476","url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To evaluate diagnostic accuracy of various large language models (LLMs) when answering radiology-specific questions with and without access to additional online, up-to-date information via retrieval-augmented generation (RAG). Materials and Methods The authors developed Radiology RAG (RadioRAG), an end-to-end framework that retrieves data from authoritative radiologic online sources in real-time. RAG incorporates information retrieval from external sources to supplement the initial prompt, grounding the model's response in relevant information. Using 80 questions from the RSNA Case Collection across radiologic subspecialties and 24 additional expert-curated questions with reference standard answers, LLMs (GPT-3.5-turbo, GPT-4, Mistral-7B, Mixtral-8 × 7B, and Llama3 [8B and 70B]) were prompted with and without RadioRAG in a zero-shot inference scenario (temperature ≤ 0.1, top- <i>P</i> = 1). RadioRAG retrieved context-specific information from www.radiopaedia.org. Accuracy of LLMs with and without RadioRAG in answering questions from each dataset was assessed. Statistical analyses were performed using bootstrapping while preserving pairing. Additional assessments included comparison of model with human performance and comparison of time required for conventional versus RadioRAG-powered question answering. Results RadioRAG improved accuracy for some LLMs, including GPT-3.5-turbo [74% (59/80) versus 66% (53/80), FDR = 0.03] and Mixtral-8 × 7B [76% (61/80) versus 65% (52/80), FDR = 0.02] on the RSNA-RadioQA dataset, with similar trends in the ExtendedQA dataset. Accuracy exceeded (FDR ≤ 0.007) that of a human expert (63%, (50/80)) for these LLMs, while not for Mistral-7B-instruct-v0.2, Llama3-8B, and Llama3-70B (FDR ≥ 0.21). RadioRAG reduced hallucinations for all LLMs (rates from 6-25%). RadioRAG increased estimated response time fourfold. Conclusion RadioRAG shows potential to improve LLM accuracy and factuality in radiology question answering by integrating real-time domain-specific data. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240476"},"PeriodicalIF":8.1,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144327031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Artificial Intelligence in Breast US Diagnosis and Report Generation. 人工智能在乳腺诊断和报告生成中的应用。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2025-06-18 DOI: 10.1148/ryai.240625
Jian Wang, HongTian Tian, Xin Yang, HuaiYu Wu, XiLiang Zhu, RuSi Chen, Ao Chang, YanLin Chen, HaoRan Dou, RuoBing Huang, Jun Cheng, YongSong Zhou, Rui Gao, KeEn Yang, GuoQiu Li, Jing Chen, Dong Ni, FaJin Dong, JinFeng Xu, Ning Gu
{"title":"Artificial Intelligence in Breast US Diagnosis and Report Generation.","authors":"Jian Wang, HongTian Tian, Xin Yang, HuaiYu Wu, XiLiang Zhu, RuSi Chen, Ao Chang, YanLin Chen, HaoRan Dou, RuoBing Huang, Jun Cheng, YongSong Zhou, Rui Gao, KeEn Yang, GuoQiu Li, Jing Chen, Dong Ni, FaJin Dong, JinFeng Xu, Ning Gu","doi":"10.1148/ryai.240625","DOIUrl":"https://doi.org/10.1148/ryai.240625","url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop and evaluate an artificial intelligence (AI) system for generating breast ultrasound (BUS) reports. Materials and Methods This retrospective study included 104,364 cases from three hospitals (January 2020-December 2022). The AI system was trained on 82,896 cases, validated on 10,385 cases, and tested on an internal set (10,383 cases) and two external sets (300 and 400 cases). Under blind review, three senior radiologists (> 10 years of experience) evaluated AI-generated reports and those written by one midlevel radiologist (7 years of experience), as well as reports from three junior radiologists (2-3 years of experience) with and without AI assistance. The primary outcomes included the acceptance rates of Breast Imaging Reporting and Data System (BI-RADS) categories and lesion characteristics. Statistical analysis included one-sided and two-sided McNemar tests for non-inferiority and significance testing. Results In external test set 1 (300 cases), the midlevel radiologist and AI system achieved BI-RADS acceptance rates of 95.00% [285/300] versus 92.33% [277/300] (<i>P</i> < .001; non-inferiority test with a prespecified margin of 10%). In external test set 2 (400 cases), three junior radiologists had BI-RADS acceptance rates of 87.00% [348/400] versus 90.75% [363/400] (<i>P</i> = .06), 86.50% [346/400] versus 92.00% [368/400] ( <i>P</i> = .007), and 84.75% [339/400] versus 90.25% [361/400] (<i>P</i> = .02) with and without AI assistance, respectively. Conclusion The AI system performed comparably to a midlevel radiologist and aided junior radiologists in BI-RADS classification. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240625"},"PeriodicalIF":8.1,"publicationDate":"2025-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144327030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retrieval-Augmented Generation with Large Language Models in Radiology: From Theory to Practice. 放射学中大语言模型的检索增强生成:从理论到实践。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2025-06-04 DOI: 10.1148/ryai.240790
Anna Fink, Alexander Rau, Marco Reisert, Fabian Bamberg, Maximilian F Russe
{"title":"Retrieval-Augmented Generation with Large Language Models in Radiology: From Theory to Practice.","authors":"Anna Fink, Alexander Rau, Marco Reisert, Fabian Bamberg, Maximilian F Russe","doi":"10.1148/ryai.240790","DOIUrl":"https://doi.org/10.1148/ryai.240790","url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Large language models (LLMs) hold substantial promise in addressing the growing workload in radiology, but recent studies also reveal limitations, such as hallucinations and opacity in sources for LLM responses. Retrieval-augmented Generation (RAG) based LLMs offer a promising approach to streamline radiology workflows by integrating reliable, verifiable, and customizable information. Ongoing refinement is critical to enable RAG models to manage large amounts of input data and to engage in complex multiagent dialogues. This report provides an overview of recent advances in LLM architecture, including few-shot and zero-shot learning, RAG integration, multistep reasoning, and agentic RAG, and identifies future research directions. Exemplary cases demonstrate the practical application of these techniques in radiology practice. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240790"},"PeriodicalIF":8.1,"publicationDate":"2025-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144217084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Estimating Total Lung Volume from Pixel-Level Thickness Maps of Chest Radiographs Using Deep Learning. 利用深度学习从胸片像素级厚度图估计总肺容量。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2025-05-28 DOI: 10.1148/ryai.240484
Tina Dorosti, Manuel Schultheiss, Philipp Schmette, Jule Heuchert, Johannes Thalhammer, Florian T Gassert, Thorsten Sellerer, Rafael Schick, Kirsten Taphorn, Korbinian Mechlem, Lorenz Birnbacher, Florian Schaff, Franz Pfeiffer, Daniela Pfeiffer
{"title":"Estimating Total Lung Volume from Pixel-Level Thickness Maps of Chest Radiographs Using Deep Learning.","authors":"Tina Dorosti, Manuel Schultheiss, Philipp Schmette, Jule Heuchert, Johannes Thalhammer, Florian T Gassert, Thorsten Sellerer, Rafael Schick, Kirsten Taphorn, Korbinian Mechlem, Lorenz Birnbacher, Florian Schaff, Franz Pfeiffer, Daniela Pfeiffer","doi":"10.1148/ryai.240484","DOIUrl":"https://doi.org/10.1148/ryai.240484","url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To estimate the total lung volume (TLV) from real and synthetic frontal chest radiographs (CXR) on a pixel level using lung thickness maps generated by a U-Net deep learning model. Materials and Methods This retrospective study included 5,959 chest CT scans from two public datasets: the lung nodule analysis 2016 (<i>n</i> = 656) and the Radiological Society of North America (RSNA) pulmonary embolism detection challenge 2020 (<i>n</i> = 5,303). Additionally, 72 participants were selected from the Klinikum Rechts der Isar dataset (October 2018 to December 2019), each with a corresponding chest radiograph taken within seven days. Synthetic radiographs and lung thickness maps were generated using forward projection of CT scans and their lung segmentations. A U-Net model was trained on synthetic radiographs to predict lung thickness maps and estimate TLV. Model performance was assessed using mean squared error (MSE), Pearson correlation coefficient <b>(r)</b>, and two-sided Student's t-distribution. Results The study included 72 participants (45 male, 27 female, 33 healthy: mean age 62 years [range 34-80]; 39 with chronic obstructive pulmonary disease: mean age 69 years [range 47-91]). TLV predictions showed low error rates (MSEPublic-Synthetic = 0.16 L<sup>2</sup>, MSEKRI-Synthetic = 0.20 L<sup>2</sup>, MSEKRI-Real = 0.35 L<sup>2</sup>) and strong correlations with CT-derived reference standard TLV (nPublic-Synthetic = 1,191, r = 0.99, <i>P</i> < .001; nKRI-Synthetic = 72, r = 0.97, <i>P</i> < .001; nKRI-Real = 72, r = 0.91, <i>P</i> < .001). When evaluated on different datasets, the U-Net model achieved the highest performance for TLV estimation on the Luna16 test dataset, with the lowest mean squared error (MSE = 0.09 L<sup>2</sup>) and strongest correlation (<i>r</i> = 0.99, <i>P</i> <.001) compared with CT-derived TLV. Conclusion The U-Net-generated pixel-level lung thickness maps successfully estimated TLV for both synthetic and real radiographs. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240484"},"PeriodicalIF":8.1,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144162222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning with Domain Randomization in Image and Feature Spaces for Abdominal Multiorgan Segmentation on CT and MRI Scans. 基于图像和特征空间随机化的深度学习用于腹部CT和MRI多器官分割。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2025-05-21 DOI: 10.1148/ryai.240586
Yu Shi, Lixia Wang, Touseef Ahmad Qureshi, Zengtian Deng, Yibin Xie, Debiao Li
{"title":"Deep Learning with Domain Randomization in Image and Feature Spaces for Abdominal Multiorgan Segmentation on CT and MRI Scans.","authors":"Yu Shi, Lixia Wang, Touseef Ahmad Qureshi, Zengtian Deng, Yibin Xie, Debiao Li","doi":"10.1148/ryai.240586","DOIUrl":"https://doi.org/10.1148/ryai.240586","url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop a deep learning segmentation model that can segment abdominal organs on CT and MR images with high accuracy and generalization ability. Materials and Methods In this study, an extended nnU-Net model was trained for abdominal organ segmentation. A domain randomization method in both the image and feature space was developed to improve the generalization ability under cross-site and cross-modality settings on public prostate MRI and abdominal CT and MRI datasets. The prostate MRI dataset contains data from multiple health care institutions with domain shifts. The abdominal CT and MRI dataset is structured for cross-modality evaluation, training on one modality (eg, MRI) and testing on the other (eg, CT). This domain randomization method was then used to train a segmentation model with enhanced generalization ability on the abdominal multiorgan segmentation challenge (AMOS) dataset to improve abdominal CT and MR multiorgan segmentation, and the model was compared with two commonly used segmentation algorithms (TotalSegmentator and MRSegmentator). Model performance was evaluated using the Dice similarity coefficient (DSC). Results The proposed domain randomization method showed improved generalization ability on the cross-site and cross-modality datasets compared with the state-of-the-art methods. The segmentation model using this method outperformed two other publicly available segmentation models on data from unseen test domains (Average DSC: 0.88 versus 0.79; <i>P</i> < .001 and 0.88 versus 0.76; <i>P</i> < .001). Conclusion The combination of image and feature domain randomizations improved the accuracy and generalization ability of deep learning-based abdominal segmentation on CT and MR images. © RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240586"},"PeriodicalIF":8.1,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144112076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cybersecurity Threats and Mitigation Strategies for Large Language Models in Health Care. 医疗保健中大型语言模型的网络安全威胁和缓解策略。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2025-05-14 DOI: 10.1148/ryai.240739
Tugba Akinci D'Antonoli, Ali S Tejani, Bardia Khosravi, Christian Bluethgen, Felix Busch, Keno K Bressem, Lisa Christine Adams, Mana Moassefi, Shahriar Faghani, Judy Wawira Gichoya
{"title":"Cybersecurity Threats and Mitigation Strategies for Large Language Models in Health Care.","authors":"Tugba Akinci D'Antonoli, Ali S Tejani, Bardia Khosravi, Christian Bluethgen, Felix Busch, Keno K Bressem, Lisa Christine Adams, Mana Moassefi, Shahriar Faghani, Judy Wawira Gichoya","doi":"10.1148/ryai.240739","DOIUrl":"https://doi.org/10.1148/ryai.240739","url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> The integration of large language models (LLMs) into health care offers tremendous opportunities to improve medical practice and patient care. Besides being susceptible to biases and threats common to all artificial intelligence systems, LLMs pose unique cybersecurity risks that must be carefully evaluated before these AI models are deployed in health care. LLMs can be exploited in several ways, such as malicious attacks, privacy breaches, and unauthorized manipulation of patient data. Moreover, malicious actors could use LLMs to infer sensitive patient information from training data. Furthermore, manipulated or poisoned data fed into these models could change their results in a way that is beneficial for the malicious actors. This report presents the cybersecurity challenges posed by LLMs in health care and provides strategies for mitigation. By implementing robust security measures and adhering to best practices during the model development, training, and deployment stages, stakeholders can help minimize these risks and protect patient privacy. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240739"},"PeriodicalIF":8.1,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143999117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Privacy-preserving Federated Learning and Uncertainty Quantification in Medical Imaging. 医学影像中隐私保护的联邦学习和不确定性量化。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2025-05-14 DOI: 10.1148/ryai.240637
Nikolas Koutsoubis, Asim Waqas, Yasin Yilmaz, Ravi P Ramachandran, Matthew B Schabath, Ghulam Rasool
{"title":"Privacy-preserving Federated Learning and Uncertainty Quantification in Medical Imaging.","authors":"Nikolas Koutsoubis, Asim Waqas, Yasin Yilmaz, Ravi P Ramachandran, Matthew B Schabath, Ghulam Rasool","doi":"10.1148/ryai.240637","DOIUrl":"https://doi.org/10.1148/ryai.240637","url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Artificial Intelligence (AI) has demonstrated strong potential in automating medical imaging tasks, with potential applications across disease diagnosis, prognosis, treatment planning, and posttreatment surveillance. However, privacy concerns surrounding patient data remain a major barrier to the widespread adoption of AI in clinical practice, as large and diverse training datasets are essential for developing accurate, robust, and generalizable AI models. Federated Learning offers a privacy-preserving solution by enabling collaborative model training across institutions without sharing sensitive data. Instead, model parameters, such as model weights, are exchanged between participating sites. Despite its potential, federated learning is still in its early stages of development and faces several challenges. Notably, sensitive information can still be inferred from the shared model parameters. Additionally, postdeployment data distribution shifts can degrade model performance, making uncertainty quantification essential. In federated learning, this task is particularly challenging due to data heterogeneity across participating sites. This review provides a comprehensive overview of federated learning, privacy-preserving federated learning, and uncertainty quantification in federated learning. Key limitations in current methodologies are identified, and future research directions are proposed to enhance data privacy and trustworthiness in medical imaging applications. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240637"},"PeriodicalIF":8.1,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144053086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Scanner Manufacturer, Endorectal Coil Use, and Clinical Variables on Deep Learning-assisted Prostate Cancer Classification Using Multiparametric MRI. 扫描仪制造商、直肠内线圈使用和临床变量对多参数MRI深度学习辅助前列腺癌分类的影响。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2025-05-01 DOI: 10.1148/ryai.230555
José Guilherme de Almeida, Nuno M Rodrigues, Ana Sofia Castro Verde, Ana Mascarenhas Gaivão, Carlos Bilreiro, Inês Santiago, Joana Ip, Sara Belião, Celso Matos, Sara Silva, Manolis Tsiknakis, Kostantinos Marias, Daniele Regge, Nikolaos Papanikolaou
{"title":"Impact of Scanner Manufacturer, Endorectal Coil Use, and Clinical Variables on Deep Learning-assisted Prostate Cancer Classification Using Multiparametric MRI.","authors":"José Guilherme de Almeida, Nuno M Rodrigues, Ana Sofia Castro Verde, Ana Mascarenhas Gaivão, Carlos Bilreiro, Inês Santiago, Joana Ip, Sara Belião, Celso Matos, Sara Silva, Manolis Tsiknakis, Kostantinos Marias, Daniele Regge, Nikolaos Papanikolaou","doi":"10.1148/ryai.230555","DOIUrl":"10.1148/ryai.230555","url":null,"abstract":"<p><p>Purpose To assess the effect of scanner manufacturer and scanning protocol on the performance of deep learning models to classify aggressiveness of prostate cancer (PCa) at biparametric MRI (bpMRI). Materials and Methods In this retrospective study, 5478 cases from ProstateNet, a PCa bpMRI dataset with examinations from 13 centers, were used to develop five deep learning (DL) models to predict PCa aggressiveness with minimal lesion information and test how using data from different subgroups-scanner manufacturers and endorectal coil (ERC) use (Siemens, Philips, GE with and without ERC, and the full dataset)-affects model performance. Performance was assessed using the area under the receiver operating characteristic curve (AUC). The effect of clinical features (age, prostate-specific antigen level, Prostate Imaging Reporting and Data System score) on model performance was also evaluated. Results DL models were trained on 4328 bpMRI cases, and the best model achieved an AUC of 0.73 when trained and tested using data from all manufacturers. Held-out test set performance was higher when models trained with data from a manufacturer were tested on the same manufacturer (within- and between-manufacturer AUC differences of 0.05 on average, <i>P</i> < .001). The addition of clinical features did not improve performance (<i>P</i> = .24). Learning curve analyses showed that performance remained stable as training data increased. Analysis of DL features showed that scanner manufacturer and scanning protocol heavily influenced feature distributions. Conclusion In automated classification of PCa aggressiveness using bpMRI data, scanner manufacturer and ERC use had a major effect on DL model performance and features. <b>Keywords:</b> Convolutional Neural Network (CNN), Computer-aided Diagnosis (CAD), Computer Applications-General (Informatics), Oncology <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license. See also commentary by Suri and Hsu in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230555"},"PeriodicalIF":8.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143013116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning-based Aligned Strain from Cine Cardiac MRI for Detection of Fibrotic Myocardial Tissue in Patients with Duchenne Muscular Dystrophy. 基于深度学习的Cine心脏MRI对齐应变检测杜氏肌营养不良患者纤维化心肌组织。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2025-05-01 DOI: 10.1148/ryai.240303
Sven Koehler, Julian Kuhm, Tyler Huffaker, Daniel Young, Animesh Tandon, Florian André, Norbert Frey, Gerald Greil, Tarique Hussain, Sandy Engelhardt
{"title":"Deep Learning-based Aligned Strain from Cine Cardiac MRI for Detection of Fibrotic Myocardial Tissue in Patients with Duchenne Muscular Dystrophy.","authors":"Sven Koehler, Julian Kuhm, Tyler Huffaker, Daniel Young, Animesh Tandon, Florian André, Norbert Frey, Gerald Greil, Tarique Hussain, Sandy Engelhardt","doi":"10.1148/ryai.240303","DOIUrl":"10.1148/ryai.240303","url":null,"abstract":"<p><p>Purpose To develop a deep learning (DL) model that derives aligned strain values from cine (noncontrast) cardiac MRI and evaluate performance of these values to predict myocardial fibrosis in patients with Duchenne muscular dystrophy (DMD). Materials and Methods This retrospective study included 139 male patients with DMD who underwent cardiac MRI at a single center between February 2018 and April 2023. A DL pipeline was developed to detect five key frames throughout the cardiac cycle and respective dense deformation fields, allowing for phase-specific strain analysis across patients and from one key frame to the next. Effectiveness of these strain values in identifying abnormal deformations associated with fibrotic segments was evaluated in 57 patients (mean age [± SD], 15.2 years ± 3.1), and reproducibility was assessed in 82 patients by comparing the study method with existing feature-tracking and DL-based methods. Statistical analysis compared strain values using <i>t</i> tests, mixed models, and more than 2000 machine learning models; accuracy, F1 score, sensitivity, and specificity are reported. Results DL-based aligned strain identified five times more differences (29 vs five; <i>P</i> < .01) between fibrotic and nonfibrotic segments compared with traditional strain values and identified abnormal diastolic deformation patterns often missed with traditional methods. In addition, aligned strain values enhanced performance of predictive models for myocardial fibrosis detection, improving specificity by 40%, overall accuracy by 17%, and accuracy in patients with preserved ejection fraction by 61%. Conclusion The proposed aligned strain technique enables motion-based detection of myocardial dysfunction at noncontrast cardiac MRI, facilitating detailed interpatient strain analysis and allowing precise tracking of disease progression in DMD. <b>Keywords:</b> Pediatrics, Image Postprocessing, Heart, Cardiac, Convolutional Neural Network (CNN) Duchenne Muscular Dystrophy <i>Supplemental material is available for this article.</i> © RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240303"},"PeriodicalIF":8.1,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12127955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143504686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信