Radiology-Artificial Intelligence最新文献

筛选
英文 中文
Radiomics Beyond the Hype: A Critical Evaluation Toward Oncologic Clinical Use. eRadiomics 超越炒作:面向肿瘤临床应用的严格评估。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-07-01 DOI: 10.1148/ryai.230437
Natally Horvat, Nikolaos Papanikolaou, Dow-Mu Koh
{"title":"Radiomics Beyond the Hype: A Critical Evaluation Toward Oncologic Clinical Use.","authors":"Natally Horvat, Nikolaos Papanikolaou, Dow-Mu Koh","doi":"10.1148/ryai.230437","DOIUrl":"10.1148/ryai.230437","url":null,"abstract":"<p><p>Radiomics is a promising and fast-developing field within oncology that involves the mining of quantitative high-dimensional data from medical images. Radiomics has the potential to transform cancer management, whereby radiomics data can be used to aid early tumor characterization, prognosis, risk stratification, treatment planning, treatment response assessment, and surveillance. Nevertheless, certain challenges have delayed the clinical adoption and acceptability of radiomics in routine clinical practice. The objectives of this report are to (<i>a</i>) provide a perspective on the translational potential and potential impact of radiomics in oncology; (<i>b</i>) explore frequent challenges and mistakes in its derivation, encompassing study design, technical requirements, standardization, model reproducibility, transparency, data sharing, privacy concerns, quality control, as well as the complexity of multistep processes resulting in less radiologist-friendly interfaces; (<i>c</i>) discuss strategies to overcome these challenges and mistakes; and (<i>d</i>) propose measures to increase the clinical use and acceptability of radiomics, taking into account the different perspectives of patients, health care workers, and health care systems. <b>Keywords:</b> Radiomics, Oncology, Cancer Management, Artificial Intelligence © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294952/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877467","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-Stage Training Framework Using Multicontrast MRI Radiomics for IDH Mutation Status Prediction in Glioma. 利用多对比核磁共振成像放射组学预测胶质瘤中 IDH 突变状态的两阶段训练框架
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-07-01 DOI: 10.1148/ryai.230218
Nghi C D Truong, Chandan Ganesh Bangalore Yogananda, Benjamin C Wagner, James M Holcomb, Divya Reddy, Niloufar Saadat, Kimmo J Hatanpaa, Toral R Patel, Baowei Fei, Matthew D Lee, Rajan Jain, Richard J Bruce, Marco C Pinho, Ananth J Madhuranthakam, Joseph A Maldjian
{"title":"Two-Stage Training Framework Using Multicontrast MRI Radiomics for <i>IDH</i> Mutation Status Prediction in Glioma.","authors":"Nghi C D Truong, Chandan Ganesh Bangalore Yogananda, Benjamin C Wagner, James M Holcomb, Divya Reddy, Niloufar Saadat, Kimmo J Hatanpaa, Toral R Patel, Baowei Fei, Matthew D Lee, Rajan Jain, Richard J Bruce, Marco C Pinho, Ananth J Madhuranthakam, Joseph A Maldjian","doi":"10.1148/ryai.230218","DOIUrl":"10.1148/ryai.230218","url":null,"abstract":"<p><p>Purpose To develop a radiomics framework for preoperative MRI-based prediction of isocitrate dehydrogenase (<i>IDH</i>) mutation status, a crucial glioma prognostic indicator. Materials and Methods Radiomics features (shape, first-order statistics, and texture) were extracted from the whole tumor or the combination of nonenhancing, necrosis, and edema regions. Segmentation masks were obtained via the federated tumor segmentation tool or the original data source. Boruta, a wrapper-based feature selection algorithm, identified relevant features. Addressing the imbalance between mutated and wild-type cases, multiple prediction models were trained on balanced data subsets using random forest or XGBoost and assembled to build the final classifier. The framework was evaluated using retrospective MRI scans from three public datasets (The Cancer Imaging Archive [TCIA, 227 patients], the University of California San Francisco Preoperative Diffuse Glioma MRI dataset [UCSF, 495 patients], and the Erasmus Glioma Database [EGD, 456 patients]) and internal datasets collected from the University of Texas Southwestern Medical Center (UTSW, 356 patients), New York University (NYU, 136 patients), and University of Wisconsin-Madison (UWM, 174 patients). TCIA and UTSW served as separate training sets, while the remaining data constituted the test set (1617 or 1488 testing cases, respectively). Results The best performing models trained on the TCIA dataset achieved area under the receiver operating characteristic curve (AUC) values of 0.89 for UTSW, 0.86 for NYU, 0.93 for UWM, 0.94 for UCSF, and 0.88 for EGD test sets. The best performing models trained on the UTSW dataset achieved slightly higher AUCs: 0.92 for TCIA, 0.88 for NYU, 0.96 for UWM, 0.93 for UCSF, and 0.90 for EGD. Conclusion This MRI radiomics-based framework shows promise for accurate preoperative prediction of <i>IDH</i> mutation status in patients with glioma. <b>Keywords:</b> Glioma, Isocitrate Dehydrogenase Mutation, <i>IDH</i> Mutation, Radiomics, MRI <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license. See also commentary by Moassefi and Erickson in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294953/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141074538","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluating Sex-specific Differences in Abdominal Fat Volume and Proton Density Fat Fraction at MRI Using Automated nnU-Net-based Segmentation. 利用基于 nnU-Net 的自动分割技术评估磁共振成像扫描中腹部脂肪量和质子密度脂肪率的性别差异
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-07-01 DOI: 10.1148/ryai.230471
Arun Somasundaram, Mingming Wu, Anna Reik, Selina Rupp, Jessie Han, Stella Naebauer, Daniela Junker, Lisa Patzelt, Meike Wiechert, Yu Zhao, Daniel Rueckert, Hans Hauner, Christina Holzapfel, Dimitrios C Karampinos
{"title":"Evaluating Sex-specific Differences in Abdominal Fat Volume and Proton Density Fat Fraction at MRI Using Automated nnU-Net-based Segmentation.","authors":"Arun Somasundaram, Mingming Wu, Anna Reik, Selina Rupp, Jessie Han, Stella Naebauer, Daniela Junker, Lisa Patzelt, Meike Wiechert, Yu Zhao, Daniel Rueckert, Hans Hauner, Christina Holzapfel, Dimitrios C Karampinos","doi":"10.1148/ryai.230471","DOIUrl":"10.1148/ryai.230471","url":null,"abstract":"<p><p>Sex-specific abdominal organ volume and proton density fat fraction (PDFF) in people with obesity during a weight loss intervention was assessed with automated multiorgan segmentation of quantitative water-fat MRI. An nnU-Net architecture was employed for automatic segmentation of abdominal organs, including visceral and subcutaneous adipose tissue, liver, and psoas and erector spinae muscle, based on quantitative chemical shift-encoded MRI and using ground truth labels generated from participants of the Lifestyle Intervention (LION) study. Each organ's volume and fat content were examined in 127 participants (73 female and 54 male participants; body mass index, 30-39.9 kg/m<sup>2</sup>) and in 81 (54 female and 32 male participants) of these participants after an 8-week formula-based low-calorie diet. Dice scores ranging from 0.91 to 0.97 were achieved for the automatic segmentation. PDFF was found to be lower in visceral adipose tissue compared with subcutaneous adipose tissue in both male and female participants. Before intervention, female participants exhibited higher PDFF in subcutaneous adipose tissue (90.6% vs 89.7%; <i>P</i> < .001) and lower PDFF in liver (8.6% vs 13.3%; <i>P</i> < .001) and visceral adipose tissue (76.4% vs 81.3%; <i>P</i> < .001) compared with male participants. This relation persisted after intervention. As a response to caloric restriction, male participants lost significantly more visceral adipose tissue volume (1.76 L vs 0.91 L; <i>P</i> < .001) and showed a higher decrease in subcutaneous adipose tissue PDFF (2.7% vs 1.5%; <i>P</i> < .001) than female participants. Automated body composition analysis on quantitative water-fat MRI data provides new insights for understanding sex-specific metabolic response to caloric restriction and weight loss in people with obesity. <b>Keywords:</b> Obesity, Chemical Shift-encoded MRI, Abdominal Fat Volume, Proton Density Fat Fraction, nnU-Net ClinicalTrials.gov registration no. NCT04023942 <i>Supplemental material is available for this article.</i> Published under a CC BY 4.0 license.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294970/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141162496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The University of California San Francisco Adult Longitudinal Post-Treatment Diffuse Glioma MRI Dataset. 加州大学旧金山分校成人纵向弥漫性胶质瘤治疗后(UCSF-ALPTDG)磁共振成像数据集。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-07-01 DOI: 10.1148/ryai.230182
Brandon K K Fields, Evan Calabrese, John Mongan, Soonmee Cha, Christopher P Hess, Leo P Sugrue, Susan M Chang, Tracy L Luks, Javier E Villanueva-Meyer, Andreas M Rauschecker, Jeffrey D Rudie
{"title":"The University of California San Francisco Adult Longitudinal Post-Treatment Diffuse Glioma MRI Dataset.","authors":"Brandon K K Fields, Evan Calabrese, John Mongan, Soonmee Cha, Christopher P Hess, Leo P Sugrue, Susan M Chang, Tracy L Luks, Javier E Villanueva-Meyer, Andreas M Rauschecker, Jeffrey D Rudie","doi":"10.1148/ryai.230182","DOIUrl":"10.1148/ryai.230182","url":null,"abstract":"<p><p>\u0000 <i>Supplemental material is available for this article.</i>\u0000 </p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294954/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of Transfer Learning Using Local Data on Performance of a Deep Learning Model for Screening Mammography. 使用本地数据进行迁移学习对乳腺筛查深度学习模型性能的影响。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-07-01 DOI: 10.1148/ryai.230383
James J J Condon, Vincent Trinh, Kelly A Hall, Michelle Reintals, Andrew S Holmes, Lauren Oakden-Rayner, Lyle J Palmer
{"title":"Impact of Transfer Learning Using Local Data on Performance of a Deep Learning Model for Screening Mammography.","authors":"James J J Condon, Vincent Trinh, Kelly A Hall, Michelle Reintals, Andrew S Holmes, Lauren Oakden-Rayner, Lyle J Palmer","doi":"10.1148/ryai.230383","DOIUrl":"10.1148/ryai.230383","url":null,"abstract":"<p><p>Purpose To investigate the issues of generalizability and replication of deep learning models by assessing performance of a screening mammography deep learning system developed at New York University (NYU) on a local Australian dataset. Materials and Methods In this retrospective study, all individuals with biopsy or surgical pathology-proven lesions and age-matched controls were identified from a South Australian public mammography screening program (January 2010 to December 2016). The primary outcome was deep learning system performance-measured with area under the receiver operating characteristic curve (AUC)-in classifying invasive breast cancer or ductal carcinoma in situ (<i>n</i> = 425) versus no malignancy (<i>n</i> = 490) or benign lesions (<i>n</i> = 44). The NYU system, including models without (NYU1) and with (NYU2) heatmaps, was tested in its original form, after training from scratch (without transfer learning), and after retraining with transfer learning. Results The local test set comprised 959 individuals (mean age, 62.5 years ± 8.5 [SD]; all female). The original AUCs for the NYU1 and NYU2 models were 0.83 (95% CI: 0.82, 0.84) and 0.89 (95% CI: 0.88, 0.89), respectively. When NYU1 and NYU2 were applied in their original form to the local test set, the AUCs were 0.76 (95% CI: 0.73, 0.79) and 0.84 (95% CI: 0.82, 0.87), respectively. After local training without transfer learning, the AUCs were 0.66 (95% CI: 0.62, 0.69) and 0.86 (95% CI: 0.84, 0.88). After retraining with transfer learning, the AUCs were 0.82 (95% CI: 0.80, 0.85) and 0.86 (95% CI: 0.84, 0.88). Conclusion A deep learning system developed using a U.S. dataset showed reduced performance when applied \"out of the box\" to an Australian dataset. Local retraining with transfer learning using available model weights improved model performance. <b>Keywords:</b> Screening Mammography, Convolutional Neural Network (CNN), Deep Learning Algorithms, Breast Cancer <i>Supplemental material is available for this article.</i> © RSNA, 2024 See also commentary by Cadrin-Chênevert in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294949/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140877468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stepwise Transfer Learning for Expert-level Pediatric Brain Tumor MRI Segmentation in a Limited Data Scenario. 在数据有限的情况下,针对专家级小儿脑肿瘤磁共振成像分割的逐步迁移学习。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-07-01 DOI: 10.1148/ryai.230254
Aidan Boyd, Zezhong Ye, Sanjay P Prabhu, Michael C Tjong, Yining Zha, Anna Zapaishchykova, Sridhar Vajapeyam, Paul J Catalano, Hasaan Hayat, Rishi Chopra, Kevin X Liu, Ali Nabavizadeh, Adam C Resnick, Sabine Mueller, Daphne A Haas-Kogan, Hugo J W L Aerts, Tina Y Poussaint, Benjamin H Kann
{"title":"Stepwise Transfer Learning for Expert-level Pediatric Brain Tumor MRI Segmentation in a Limited Data Scenario.","authors":"Aidan Boyd, Zezhong Ye, Sanjay P Prabhu, Michael C Tjong, Yining Zha, Anna Zapaishchykova, Sridhar Vajapeyam, Paul J Catalano, Hasaan Hayat, Rishi Chopra, Kevin X Liu, Ali Nabavizadeh, Adam C Resnick, Sabine Mueller, Daphne A Haas-Kogan, Hugo J W L Aerts, Tina Y Poussaint, Benjamin H Kann","doi":"10.1148/ryai.230254","DOIUrl":"10.1148/ryai.230254","url":null,"abstract":"<p><p>Purpose To develop, externally test, and evaluate clinical acceptability of a deep learning pediatric brain tumor segmentation model using stepwise transfer learning. Materials and Methods In this retrospective study, the authors leveraged two T2-weighted MRI datasets (May 2001 through December 2015) from a national brain tumor consortium (<i>n</i> = 184; median age, 7 years [range, 1-23 years]; 94 male patients) and a pediatric cancer center (<i>n</i> = 100; median age, 8 years [range, 1-19 years]; 47 male patients) to develop and evaluate deep learning neural networks for pediatric low-grade glioma segmentation using a stepwise transfer learning approach to maximize performance in a limited data scenario. The best model was externally tested on an independent test set and subjected to randomized blinded evaluation by three clinicians, wherein they assessed clinical acceptability of expert- and artificial intelligence (AI)-generated segmentations via 10-point Likert scales and Turing tests. Results The best AI model used in-domain stepwise transfer learning (median Dice score coefficient, 0.88 [IQR, 0.72-0.91] vs 0.812 [IQR, 0.56-0.89] for baseline model; <i>P</i> = .049). With external testing, the AI model yielded excellent accuracy using reference standards from three clinical experts (median Dice similarity coefficients: expert 1, 0.83 [IQR, 0.75-0.90]; expert 2, 0.81 [IQR, 0.70-0.89]; expert 3, 0.81 [IQR, 0.68-0.88]; mean accuracy, 0.82). For clinical benchmarking (<i>n</i> = 100 scans), experts rated AI-based segmentations higher on average compared with other experts (median Likert score, 9 [IQR, 7-9] vs 7 [IQR 7-9]) and rated more AI segmentations as clinically acceptable (80.2% vs 65.4%). Experts correctly predicted the origin of AI segmentations in an average of 26.0% of cases. Conclusion Stepwise transfer learning enabled expert-level automated pediatric brain tumor autosegmentation and volumetric measurement with a high level of clinical acceptability. <b>Keywords:</b> Stepwise Transfer Learning, Pediatric Brain Tumors, MRI Segmentation, Deep Learning <i>Supplemental material is available for this article</i>. © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294948/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141564667","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Navigating Clinical Variability: Transfer Learning's Impact on Imaging Model Performance. 驾驭临床变异性:迁移学习对成像模型性能的影响。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-07-01 DOI: 10.1148/ryai.240263
Alexandre Cadrin-Chênevert
{"title":"Navigating Clinical Variability: Transfer Learning's Impact on Imaging Model Performance.","authors":"Alexandre Cadrin-Chênevert","doi":"10.1148/ryai.240263","DOIUrl":"10.1148/ryai.240263","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294946/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A New Era of Text Mining in Radiology with Privacy-Preserving LLMs. 用保护隐私的 LLMs 开启放射学文本挖掘新纪元
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-07-01 DOI: 10.1148/ryai.240261
Tugba Akinci D'Antonoli, Christian Bluethgen
{"title":"A New Era of Text Mining in Radiology with Privacy-Preserving LLMs.","authors":"Tugba Akinci D'Antonoli, Christian Bluethgen","doi":"10.1148/ryai.240261","DOIUrl":"10.1148/ryai.240261","url":null,"abstract":"","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294969/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141427770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reproducibility Analysis of Radiomic Features on T2-weighted MR Images after Processing and Segmentation Alterations in Neuroblastoma Tumors. 神经母细胞瘤 T2 加权核磁共振成像处理和分割交替后放射学特征的再现性分析
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-07-01 DOI: 10.1148/ryai.230208
Diana Veiga-Canuto, Matías Fernández-Patón, Leonor Cerdà Alberich, Ana Jiménez Pastor, Armando Gomis Maya, Jose Miguel Carot Sierra, Cinta Sangüesa Nebot, Blanca Martínez de Las Heras, Ulrike Pötschger, Sabine Taschner-Mandl, Emanuele Neri, Adela Cañete, Ruth Ladenstein, Barbara Hero, Ángel Alberich-Bayarri, Luis Martí-Bonmatí
{"title":"Reproducibility Analysis of Radiomic Features on T2-weighted MR Images after Processing and Segmentation Alterations in Neuroblastoma Tumors.","authors":"Diana Veiga-Canuto, Matías Fernández-Patón, Leonor Cerdà Alberich, Ana Jiménez Pastor, Armando Gomis Maya, Jose Miguel Carot Sierra, Cinta Sangüesa Nebot, Blanca Martínez de Las Heras, Ulrike Pötschger, Sabine Taschner-Mandl, Emanuele Neri, Adela Cañete, Ruth Ladenstein, Barbara Hero, Ángel Alberich-Bayarri, Luis Martí-Bonmatí","doi":"10.1148/ryai.230208","DOIUrl":"10.1148/ryai.230208","url":null,"abstract":"<p><p>Purpose To evaluate the reproducibility of radiomics features extracted from T2-weighted MR images in patients with neuroblastoma. Materials and Methods A retrospective study included 419 patients (mean age, 29 months ± 34 [SD]; 220 male, 199 female) with neuroblastic tumors diagnosed between 2002 and 2023, within the scope of the PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers (ie, PRIMAGE) project, involving 746 T2/T2*-weighted MRI sequences at diagnosis and/or after initial chemotherapy. Images underwent processing steps (denoising, inhomogeneity bias field correction, normalization, and resampling). Tumors were automatically segmented, and 107 shape, first-order, and second-order radiomics features were extracted, considered as the reference standard. Subsequently, the previous image processing settings were modified, and volumetric masks were applied. New radiomics features were extracted and compared with the reference standard. Reproducibility was assessed using the concordance correlation coefficient (CCC); intrasubject repeatability was measured using the coefficient of variation (CoV). Results When normalization was omitted, only 5% of the radiomics features demonstrated high reproducibility. Statistical analysis revealed significant changes in the normalization and resampling processes (<i>P</i> < .001). Inhomogeneities removal had the least impact on radiomics (83% of parameters remained stable). Shape features remained stable after mask modifications, with a CCC greater than 0.90. Mask modifications were the most favorable changes for achieving high CCC values, with a radiomics features stability of 70%. Only 7% of second-order radiomics features showed an excellent CoV of less than 0.10. Conclusion Modifications in the T2-weighted MRI preparation process in patients with neuroblastoma resulted in changes in radiomics features, with normalization identified as the most influential factor for reproducibility. Inhomogeneities removal had the least impact on radiomics features. <b>Keywords:</b> Pediatrics, MR Imaging, Oncology, Radiomics, Reproducibility, Repeatability, Neuroblastic Tumors <i>Supplemental material is available for this article.</i> © RSNA, 2024 See also the commentary by Safdar and Galaria in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294951/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141307007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review. 深度学习前列腺 MRI 分段准确性和鲁棒性:系统性综述。
IF 8.1
Radiology-Artificial Intelligence Pub Date : 2024-07-01 DOI: 10.1148/ryai.230138
Mohammad-Kasim Fassia, Adithya Balasubramanian, Sungmin Woo, Hebert Alberto Vargas, Hedvig Hricak, Ender Konukoglu, Anton S Becker
{"title":"Deep Learning Prostate MRI Segmentation Accuracy and Robustness: A Systematic Review.","authors":"Mohammad-Kasim Fassia, Adithya Balasubramanian, Sungmin Woo, Hebert Alberto Vargas, Hedvig Hricak, Ender Konukoglu, Anton S Becker","doi":"10.1148/ryai.230138","DOIUrl":"10.1148/ryai.230138","url":null,"abstract":"<p><p>Purpose To investigate the accuracy and robustness of prostate segmentation using deep learning across various training data sizes, MRI vendors, prostate zones, and testing methods relative to fellowship-trained diagnostic radiologists. Materials and Methods In this systematic review, Embase, PubMed, Scopus, and Web of Science databases were queried for English-language articles using keywords and related terms for prostate MRI segmentation and deep learning algorithms dated to July 31, 2022. A total of 691 articles from the search query were collected and subsequently filtered to 48 on the basis of predefined inclusion and exclusion criteria. Multiple characteristics were extracted from selected studies, such as deep learning algorithm performance, MRI vendor, and training dataset features. The primary outcome was comparison of mean Dice similarity coefficient (DSC) for prostate segmentation for deep learning algorithms versus diagnostic radiologists. Results Forty-eight studies were included. Most published deep learning algorithms for whole prostate gland segmentation (39 of 42 [93%]) had a DSC at or above expert level (DSC ≥ 0.86). The mean DSC was 0.79 ± 0.06 (SD) for peripheral zone, 0.87 ± 0.05 for transition zone, and 0.90 ± 0.04 for whole prostate gland segmentation. For selected studies that used one major MRI vendor, the mean DSCs of each were as follows: General Electric (three of 48 studies), 0.92 ± 0.03; Philips (four of 48 studies), 0.92 ± 0.02; and Siemens (six of 48 studies), 0.91 ± 0.03. Conclusion Deep learning algorithms for prostate MRI segmentation demonstrated accuracy similar to that of expert radiologists despite varying parameters; therefore, future research should shift toward evaluating segmentation robustness and patient outcomes across diverse clinical settings. <b>Keywords:</b> MRI, Genital/Reproductive, Prostate Segmentation, Deep Learning Systematic review registration link: osf.io/nxaev © RSNA, 2024.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":null,"pages":null},"PeriodicalIF":8.1,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11294957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信