Deep Learning-based Aligned Strain from Cine Cardiac MRI for Detection of Fibrotic Myocardial Tissue in Patients with Duchenne Muscular Dystrophy.

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Sven Koehler, Julian Kuhm, Tyler Huffaker, Daniel Young, Animesh Tandon, Florian André, Norbert Frey, Gerald Greil, Tarique Hussain, Sandy Engelhardt
{"title":"Deep Learning-based Aligned Strain from Cine Cardiac MRI for Detection of Fibrotic Myocardial Tissue in Patients with Duchenne Muscular Dystrophy.","authors":"Sven Koehler, Julian Kuhm, Tyler Huffaker, Daniel Young, Animesh Tandon, Florian André, Norbert Frey, Gerald Greil, Tarique Hussain, Sandy Engelhardt","doi":"10.1148/ryai.240303","DOIUrl":null,"url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop a deep learning (DL) model that derives aligned strain values from cine (noncontrast) cardiac MRI and evaluate performance of these values to predict myocardial fibrosis in patients with Duchenne muscular dystrophy (DMD). Materials and Methods This retrospective study included 139 male patients with DMD who underwent cardiac MRI examinations at a single center between February 2018 and April 2023. A DL pipeline was developed to detect five key frames throughout the cardiac cycle, and respective dense deformation fields, allowing for phase-specific strain analysis across patients and from one key frame to the next. Effectiveness of these strain values in identifying abnormal deformations associated with fibrotic segments was evaluated in 57 patients (15.2 ± 3.1 years), and reproducibility was assessed in 82 patients (12.8 ± 2.7 years), comparing our method with existing feature-tracking and DL-based methods. Statistical analysis compared strain values using <i>t</i> tests, mixed models, and 2000+ ML models, reporting accuracy, F1 score, sensitivity, and specificity. Results DL-based aligned strain identified five times more differences (29 versus 5, <i>P</i> < .01) between fibrotic and nonfibrotic segments compared with traditional strain values and identified abnormal diastolic deformation patterns often missed by traditional methods. Additionally, aligned strain values enhanced performance of predictive models for myocardial fibrosis detection, improving specificity by 40%, overall accuracy by 17%, and accuracy patients with preserved ejection fraction by 61%. Conclusion The proposed aligned strain technique enables motion-based detection of myocardial dysfunction on contrast free cardiac MRI, facilitating detailed interpatient strain analysis, and allowing precise tracking of disease progression in DMD. ©RSNA, 2025.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240303"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.240303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To develop a deep learning (DL) model that derives aligned strain values from cine (noncontrast) cardiac MRI and evaluate performance of these values to predict myocardial fibrosis in patients with Duchenne muscular dystrophy (DMD). Materials and Methods This retrospective study included 139 male patients with DMD who underwent cardiac MRI examinations at a single center between February 2018 and April 2023. A DL pipeline was developed to detect five key frames throughout the cardiac cycle, and respective dense deformation fields, allowing for phase-specific strain analysis across patients and from one key frame to the next. Effectiveness of these strain values in identifying abnormal deformations associated with fibrotic segments was evaluated in 57 patients (15.2 ± 3.1 years), and reproducibility was assessed in 82 patients (12.8 ± 2.7 years), comparing our method with existing feature-tracking and DL-based methods. Statistical analysis compared strain values using t tests, mixed models, and 2000+ ML models, reporting accuracy, F1 score, sensitivity, and specificity. Results DL-based aligned strain identified five times more differences (29 versus 5, P < .01) between fibrotic and nonfibrotic segments compared with traditional strain values and identified abnormal diastolic deformation patterns often missed by traditional methods. Additionally, aligned strain values enhanced performance of predictive models for myocardial fibrosis detection, improving specificity by 40%, overall accuracy by 17%, and accuracy patients with preserved ejection fraction by 61%. Conclusion The proposed aligned strain technique enables motion-based detection of myocardial dysfunction on contrast free cardiac MRI, facilitating detailed interpatient strain analysis, and allowing precise tracking of disease progression in DMD. ©RSNA, 2025.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信