扫描仪制造商、直肠内线圈使用和临床变量对多参数MRI深度学习辅助前列腺癌分类的影响。

IF 8.1 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
José Guilherme de Almeida, Nuno M Rodrigues, Ana Sofia Castro Verde, Ana Mascarenhas Gaivão, Carlos Bilreiro, Inês Santiago, Joana Ip, Sara Belião, Celso Matos, Sara Silva, Manolis Tsiknakis, Kostantinos Marias, Daniele Regge, Nikolaos Papanikolaou
{"title":"扫描仪制造商、直肠内线圈使用和临床变量对多参数MRI深度学习辅助前列腺癌分类的影响。","authors":"José Guilherme de Almeida, Nuno M Rodrigues, Ana Sofia Castro Verde, Ana Mascarenhas Gaivão, Carlos Bilreiro, Inês Santiago, Joana Ip, Sara Belião, Celso Matos, Sara Silva, Manolis Tsiknakis, Kostantinos Marias, Daniele Regge, Nikolaos Papanikolaou","doi":"10.1148/ryai.230555","DOIUrl":null,"url":null,"abstract":"<p><p><i>\"Just Accepted\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To assess the impact of scanner manufacturer and scan protocol on the performance of deep learning models to classify prostate cancer (PCa) aggressiveness on biparametric MRI (bpMRI). Materials and Methods In this retrospective study, 5,478 cases from ProstateNet, a PCa bpMRI dataset with examinations from 13 centers, were used to develop five deep learning (DL) models to predict PCa aggressiveness with minimal lesion information and test how using data from different subgroups-scanner manufacturers and endorectal coil (ERC) use (Siemens, Philips, GE with and without ERC and the full dataset)-impacts model performance. Performance was assessed using the area under the receiver operating characteristic curve (AUC). The impact of clinical features (age, prostate-specific antigen level, Prostate Imaging Reporting and Data System [PI-RADS] score) on model performance was also evaluated. Results DL models were trained on 4,328 bpMRI cases, and the best model achieved AUC = 0.73 when trained and tested using data from all manufacturers. Hold-out test set performance was higher when models trained with data from a manufacturer were tested on the same manufacturer (within-and between-manufacturer AUC differences of 0.05 on average, <i>P</i> < .001). The addition of clinical features did not improve performance (<i>P</i> = .24). Learning curve analyses showed that performance remained stable as training data increased. Analysis of DL features showed that scanner manufacturer and scan protocol heavily influenced feature distributions. Conclusion In automated classification of PCa aggressiveness using bpMRI data, scanner manufacturer and endorectal coil use had a major impact on DL model performance and features. Published under a CC BY 4.0 license.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e230555"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Scanner Manufacturer, Endorectal Coil Use, and Clinical Variables on Deep Learning-assisted Prostate Cancer Classification Using Multiparametric MRI.\",\"authors\":\"José Guilherme de Almeida, Nuno M Rodrigues, Ana Sofia Castro Verde, Ana Mascarenhas Gaivão, Carlos Bilreiro, Inês Santiago, Joana Ip, Sara Belião, Celso Matos, Sara Silva, Manolis Tsiknakis, Kostantinos Marias, Daniele Regge, Nikolaos Papanikolaou\",\"doi\":\"10.1148/ryai.230555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>\\\"Just Accepted\\\" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To assess the impact of scanner manufacturer and scan protocol on the performance of deep learning models to classify prostate cancer (PCa) aggressiveness on biparametric MRI (bpMRI). Materials and Methods In this retrospective study, 5,478 cases from ProstateNet, a PCa bpMRI dataset with examinations from 13 centers, were used to develop five deep learning (DL) models to predict PCa aggressiveness with minimal lesion information and test how using data from different subgroups-scanner manufacturers and endorectal coil (ERC) use (Siemens, Philips, GE with and without ERC and the full dataset)-impacts model performance. Performance was assessed using the area under the receiver operating characteristic curve (AUC). The impact of clinical features (age, prostate-specific antigen level, Prostate Imaging Reporting and Data System [PI-RADS] score) on model performance was also evaluated. Results DL models were trained on 4,328 bpMRI cases, and the best model achieved AUC = 0.73 when trained and tested using data from all manufacturers. Hold-out test set performance was higher when models trained with data from a manufacturer were tested on the same manufacturer (within-and between-manufacturer AUC differences of 0.05 on average, <i>P</i> < .001). The addition of clinical features did not improve performance (<i>P</i> = .24). Learning curve analyses showed that performance remained stable as training data increased. Analysis of DL features showed that scanner manufacturer and scan protocol heavily influenced feature distributions. Conclusion In automated classification of PCa aggressiveness using bpMRI data, scanner manufacturer and endorectal coil use had a major impact on DL model performance and features. Published under a CC BY 4.0 license.</p>\",\"PeriodicalId\":29787,\"journal\":{\"name\":\"Radiology-Artificial Intelligence\",\"volume\":\" \",\"pages\":\"e230555\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiology-Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1148/ryai.230555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.230555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

“刚刚接受”的论文经过了全面的同行评审,并已被接受发表在《放射学:人工智能》杂志上。这篇文章将经过编辑,布局和校样审查,然后在其最终版本出版。请注意,在最终编辑文章的制作过程中,可能会发现可能影响内容的错误。目的评估扫描仪制造商和扫描方案对深度学习模型在双参数MRI (bpMRI)上对前列腺癌(PCa)侵袭性分类性能的影响。在这项回顾性研究中,来自ProstateNet的5478例病例(来自13个中心的前列腺癌bpMRI数据集)被用于开发五种深度学习(DL)模型,以最少的病变信息预测前列腺癌的侵袭性,并测试使用来自不同亚组的数据-扫描仪制造商和直肠内线圈(ERC)的使用(西门子,飞利浦,GE有或没有ERC和完整数据集)-如何影响模型性能。使用接收器工作特性曲线下面积(AUC)评估性能。临床特征(年龄、前列腺特异性抗原水平、前列腺影像学报告和数据系统评分)对模型性能的影响也进行了评估。结果在4328例bpMRI病例上训练DL模型,使用所有厂商的数据进行训练和测试时,最佳模型AUC = 0.73。当使用来自制造商的数据训练的模型在同一制造商上进行测试时,保留测试集的性能更高(制造商内部和制造商之间的AUC平均差异为0.05,P < .001)。临床特征的增加并没有提高疗效(P = 0.24)。学习曲线分析表明,随着训练数据的增加,性能保持稳定。对DL特征的分析表明,扫描仪制造商和扫描协议对特征分布有很大影响。结论在利用bpMRI数据对前列腺癌侵袭性进行自动分类时,扫描仪制造商和直肠内线圈的使用对DL模型的性能和特征有重要影响。在CC BY 4.0许可下发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Impact of Scanner Manufacturer, Endorectal Coil Use, and Clinical Variables on Deep Learning-assisted Prostate Cancer Classification Using Multiparametric MRI.

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. Purpose To assess the impact of scanner manufacturer and scan protocol on the performance of deep learning models to classify prostate cancer (PCa) aggressiveness on biparametric MRI (bpMRI). Materials and Methods In this retrospective study, 5,478 cases from ProstateNet, a PCa bpMRI dataset with examinations from 13 centers, were used to develop five deep learning (DL) models to predict PCa aggressiveness with minimal lesion information and test how using data from different subgroups-scanner manufacturers and endorectal coil (ERC) use (Siemens, Philips, GE with and without ERC and the full dataset)-impacts model performance. Performance was assessed using the area under the receiver operating characteristic curve (AUC). The impact of clinical features (age, prostate-specific antigen level, Prostate Imaging Reporting and Data System [PI-RADS] score) on model performance was also evaluated. Results DL models were trained on 4,328 bpMRI cases, and the best model achieved AUC = 0.73 when trained and tested using data from all manufacturers. Hold-out test set performance was higher when models trained with data from a manufacturer were tested on the same manufacturer (within-and between-manufacturer AUC differences of 0.05 on average, P < .001). The addition of clinical features did not improve performance (P = .24). Learning curve analyses showed that performance remained stable as training data increased. Analysis of DL features showed that scanner manufacturer and scan protocol heavily influenced feature distributions. Conclusion In automated classification of PCa aggressiveness using bpMRI data, scanner manufacturer and endorectal coil use had a major impact on DL model performance and features. Published under a CC BY 4.0 license.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.20
自引率
1.00%
发文量
0
期刊介绍: Radiology: Artificial Intelligence is a bi-monthly publication that focuses on the emerging applications of machine learning and artificial intelligence in the field of imaging across various disciplines. This journal is available online and accepts multiple manuscript types, including Original Research, Technical Developments, Data Resources, Review articles, Editorials, Letters to the Editor and Replies, Special Reports, and AI in Brief.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信