Yi Yang, Zhenyao Chang, Xin Nie, Jun Wu, Jingang Chen, Weiqi Liu, Hongwei He, Shuo Wang, Chengcheng Zhu, Qingyuan Liu
求助PDF
{"title":"Integrated Deep Learning Model for the Detection, Segmentation, and Morphologic Analysis of Intracranial Aneurysms Using CT Angiography.","authors":"Yi Yang, Zhenyao Chang, Xin Nie, Jun Wu, Jingang Chen, Weiqi Liu, Hongwei He, Shuo Wang, Chengcheng Zhu, Qingyuan Liu","doi":"10.1148/ryai.240017","DOIUrl":null,"url":null,"abstract":"<p><p>Purpose To develop a deep learning model for the morphologic measurement of unruptured intracranial aneurysms (UIAs) based on CT angiography (CTA) data and validate its performance using a multicenter dataset. Materials and Methods In this retrospective study, patients with CTA examinations, including those with and without UIAs, in a tertiary referral hospital from February 2018 to February 2021 were included as the training dataset. Patients with UIAs who underwent CTA at multiple centers between April 2021 and December 2022 were included as the multicenter external testing set. An integrated deep learning (IDL) model was developed for UIA detection, segmentation, and morphologic measurement using an nnU-Net algorithm. Model performance was evaluated using the Dice similarity coefficient (DSC) and intraclass correlation coefficient (ICC), with measurements by senior radiologists serving as the reference standard. The ability of the IDL model to improve performance of junior radiologists in measuring morphologic UIA features was assessed. Results The study included 1182 patients with UIAs and 578 controls without UIAs as the training dataset (median age, 55 years [IQR, 47-62 years], 1012 [57.5%] female) and 535 patients with UIAs as the multicenter external testing set (median age, 57 years [IQR, 50-63 years], 353 [66.0%] female). The IDL model achieved 97% accuracy in detecting UIAs and achieved a DSC of 0.90 (95% CI: 0.88, 0.92) for UIA segmentation. Model-based morphologic measurements showed good agreement with reference standard measurements (all ICCs > 0.85). Within the multicenter external testing set, the IDL model also showed agreement with reference standard measurements (all ICCs > 0.80). Junior radiologists assisted by the IDL model showed significantly improved performance in measuring UIA size (ICC improved from 0.88 [95% CI: 0.80, 0.92] to 0.96 [95% CI: 0.92, 0.97], <i>P</i> < .001). Conclusion The developed integrated deep learning model using CTA data showed good performance in UIA detection, segmentation, and morphologic measurement and may be used to assist less experienced radiologists in morphologic analysis of UIAs. <b>Keywords:</b> Segmentation, CT Angiography, Head/Neck, Aneurysms, Comparative Studies <i>Supplemental material is available for this article.</i> © RSNA, 2024 See also the commentary by Wang in this issue.</p>","PeriodicalId":29787,"journal":{"name":"Radiology-Artificial Intelligence","volume":" ","pages":"e240017"},"PeriodicalIF":8.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology-Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1148/ryai.240017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Purpose To develop a deep learning model for the morphologic measurement of unruptured intracranial aneurysms (UIAs) based on CT angiography (CTA) data and validate its performance using a multicenter dataset. Materials and Methods In this retrospective study, patients with CTA examinations, including those with and without UIAs, in a tertiary referral hospital from February 2018 to February 2021 were included as the training dataset. Patients with UIAs who underwent CTA at multiple centers between April 2021 and December 2022 were included as the multicenter external testing set. An integrated deep learning (IDL) model was developed for UIA detection, segmentation, and morphologic measurement using an nnU-Net algorithm. Model performance was evaluated using the Dice similarity coefficient (DSC) and intraclass correlation coefficient (ICC), with measurements by senior radiologists serving as the reference standard. The ability of the IDL model to improve performance of junior radiologists in measuring morphologic UIA features was assessed. Results The study included 1182 patients with UIAs and 578 controls without UIAs as the training dataset (median age, 55 years [IQR, 47-62 years], 1012 [57.5%] female) and 535 patients with UIAs as the multicenter external testing set (median age, 57 years [IQR, 50-63 years], 353 [66.0%] female). The IDL model achieved 97% accuracy in detecting UIAs and achieved a DSC of 0.90 (95% CI: 0.88, 0.92) for UIA segmentation. Model-based morphologic measurements showed good agreement with reference standard measurements (all ICCs > 0.85). Within the multicenter external testing set, the IDL model also showed agreement with reference standard measurements (all ICCs > 0.80). Junior radiologists assisted by the IDL model showed significantly improved performance in measuring UIA size (ICC improved from 0.88 [95% CI: 0.80, 0.92] to 0.96 [95% CI: 0.92, 0.97], P < .001). Conclusion The developed integrated deep learning model using CTA data showed good performance in UIA detection, segmentation, and morphologic measurement and may be used to assist less experienced radiologists in morphologic analysis of UIAs. Keywords: Segmentation, CT Angiography, Head/Neck, Aneurysms, Comparative Studies Supplemental material is available for this article. © RSNA, 2024 See also the commentary by Wang in this issue.