Current Research in Green and Sustainable Chemistry最新文献

筛选
英文 中文
Evaluation of azo dyes degradation potential of Staphylococcus strains: A strategy for dye-waste management 评估葡萄球菌菌株降解偶氮染料的潜力:染料废物管理策略
Current Research in Green and Sustainable Chemistry Pub Date : 2024-01-01 DOI: 10.1016/j.crgsc.2024.100432
Mehvish Ajaz , Eeman Ali , Dilara Abbas Bukhari , Hafiz Zeeshan Wadood , Shaista Shafiq , Syed Zajif Hussain , Abdul Rehman
{"title":"Evaluation of azo dyes degradation potential of Staphylococcus strains: A strategy for dye-waste management","authors":"Mehvish Ajaz ,&nbsp;Eeman Ali ,&nbsp;Dilara Abbas Bukhari ,&nbsp;Hafiz Zeeshan Wadood ,&nbsp;Shaista Shafiq ,&nbsp;Syed Zajif Hussain ,&nbsp;Abdul Rehman","doi":"10.1016/j.crgsc.2024.100432","DOIUrl":"10.1016/j.crgsc.2024.100432","url":null,"abstract":"<div><div>The current investigation aimed to identify the bacterial isolates that could prove helpful in the degeneration of harmful azo dyes from wastewater. The bacterial strains 1b, 1 m, and 4v could decolorize azo dyes up to 81 %, 79 %, and 87 % within 5 days. The degraded products by thin layer chromatography (TLC) showed Rf values of 0.89, 0.95, 0.90, 0.92, and 0.98 while the control showed an Rf value of 0.94. The comparison of the retention time of control and treated samples by the high-performance liquid chromatography (HPLC) system convinced that remarkable decolorization had occurred by the bacterial strains. The Fourier transform infrared spectroscopy (FTIR) analysis of the control and degraded samples was proof that the bond stretching occurred in the treated samples due to the action of bacterial strains. The release of compounds by bacteria i.e., 3-Aminobutanoic acid, pyrrolo pyrazine-1, 4-dione, and palmitic acid was inspected by Gas Chromatography-Mass Spectroscopy (GC-MS) analysis. No clear zones showed that the bacterial dye-degraded wastewater had no harm to the normal flora. At last, phytotoxicity was studied on <em>Vigna radiata</em> which had negative results. Given their pollutant degrading capabilities, these bacterial isolates are a good bioresource for green chemistry to exterminate azo dyes from the environment.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100432"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142554819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative catalytic efficacy of cost-effective MIL-101(Cr) based PET waste for biodiesel production 基于 PET 废料的成本效益型 MIL-101(Cr)在生物柴油生产中的催化功效比较
Current Research in Green and Sustainable Chemistry Pub Date : 2024-01-01 DOI: 10.1016/j.crgsc.2024.100401
Ahmed S. Abou-Elyazed , Amira K.F. Shaban , Ahmed I. Osman , Lobna A. Heikal , Hamdy F.M. Mohamed , Walid M.I. Hassan , Ahmed M. El-Nahas , Basem E. Keshta , Asmaa S. Hamouda
{"title":"Comparative catalytic efficacy of cost-effective MIL-101(Cr) based PET waste for biodiesel production","authors":"Ahmed S. Abou-Elyazed ,&nbsp;Amira K.F. Shaban ,&nbsp;Ahmed I. Osman ,&nbsp;Lobna A. Heikal ,&nbsp;Hamdy F.M. Mohamed ,&nbsp;Walid M.I. Hassan ,&nbsp;Ahmed M. El-Nahas ,&nbsp;Basem E. Keshta ,&nbsp;Asmaa S. Hamouda","doi":"10.1016/j.crgsc.2024.100401","DOIUrl":"10.1016/j.crgsc.2024.100401","url":null,"abstract":"<div><p>Polyethylene terephthalate (PET) use has increased, causing more PET trash and environmental and health issues. Disposal and burning alone cannot solve this problem. Thus, PET recovery methods with low byproducts are the priority. The recycling rate is still below 30%, so different cleaning methods are being investigated. Therefore, studies have focused on extracting terephthalic acid from PET bottles for MOF synthesis to reduce their cost of production. Herein, MIL-101(Cr) was synthesized from PET bottles and used as a solid catalyst for oleic acid esterification with methanol to produce methyl oleate (biodiesel), an alternative energy source to fossil fuels—the highest biodiesel yields at 1:39 molar ratio of oleic acid to MeOH, 6 wt% loading, 65 °C, and 4 h reactions time were attained at 86.9 and 80% for MIL-101(Cr) on a pristine and scrap basis, respectively. The kinetic study revealed that activation energies were 25.27 kJ/mol and 28.3 kJ/mol for original and waste-derived MIL-101(Cr). The waste-derived MIL-101(Cr) was reused three times while five-time cycles for the original MIL-101(Cr).</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100401"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000067/pdfft?md5=cacff971fd0fefc9fc756ea60185b573&pid=1-s2.0-S2666086524000067-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140036084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biosynthesis of silver nanoparticles as a reliable alternative for the catalytic degradation of organic dyes and antibacterial applications 生物合成银纳米粒子,作为催化降解有机染料和抗菌应用的可靠替代品
Current Research in Green and Sustainable Chemistry Pub Date : 2024-01-01 DOI: 10.1016/j.crgsc.2024.100408
Baraa U. Hijazi , Marwa Faraj , Rami Mhanna , Mohammad H. El-Dakdouki
{"title":"Biosynthesis of silver nanoparticles as a reliable alternative for the catalytic degradation of organic dyes and antibacterial applications","authors":"Baraa U. Hijazi ,&nbsp;Marwa Faraj ,&nbsp;Rami Mhanna ,&nbsp;Mohammad H. El-Dakdouki","doi":"10.1016/j.crgsc.2024.100408","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100408","url":null,"abstract":"<div><p>Water bodies are being threatened continuously by various anthropogenic pollutants such as organic dyes and bacteria which led to scarcity of fresh water suitable for drinking and irrigation. Therefore, different water treatment methods have been implemented before the discharge of contaminated wastewater into water bodies. In this report, green-synthesized silver nanoparticles (AgNPs) were evaluated in the degradation of organic dyes and bacterial decontamination. The <em>S. costus</em> root aqueous extract was used as an environmentally benign reducing agent in the biosynthesis of AgNPs. The synthetic procedure was optimized in terms of different parameters, and several analytical techniques were used to thoroughly characterize the prepared nanocomposites including TEM, SEM, EDX, DLS, XRD, FTIR, UV/Vis, photoluminescence, and TGA. The nanoparticles were spherical, monodisperse, colloidally and thermally stable, and crystalline in nature. The efficiency of the biogenic AgNPs as catalysts for the degradation of organic dyes was evaluated against six structurally diverse dyes. These included methylene blue, phenol red, methyl orange, Congo red, orange G and safranin O. Moreover, the applicability of AgNPs as antibacterial agents was tested against <em>K. pneumoniae, S. aureus, S. haemolyticus and E. faecalis</em> where the zones of growth inhibition, MIC and MBC values were determined for each bacterium. Overall, the biosynthesized nanoparticles were remarkable catalysts in the discoloration of hazardous dyes and displayed notable antibacterial potency against Gram-positive and Gram-negative bacteria.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100408"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000134/pdfft?md5=6f95e65239f49890ebd35a44cda23a19&pid=1-s2.0-S2666086524000134-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140179673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissolution and recovery of poly(3-hydroxybutyrate) in switchable solvents and the formation of a switchable gel 聚(3-羟基丁酸)在可切换溶剂中的溶解和回收以及可切换凝胶的形成
Current Research in Green and Sustainable Chemistry Pub Date : 2024-01-01 DOI: 10.1016/j.crgsc.2024.100421
Mark Douglas Lawley , Lisa Y. Stein , Dominic Sauvageau
{"title":"Dissolution and recovery of poly(3-hydroxybutyrate) in switchable solvents and the formation of a switchable gel","authors":"Mark Douglas Lawley ,&nbsp;Lisa Y. Stein ,&nbsp;Dominic Sauvageau","doi":"10.1016/j.crgsc.2024.100421","DOIUrl":"10.1016/j.crgsc.2024.100421","url":null,"abstract":"<div><p>Poly(3-hydroxybutyrate) (PHB), a bio-produced and biodegradable polymer, has great potential as a replacement for petroleum-based polymers in many applications. However, strategies for the extraction and processing of PHB still require improvement. Switchable solvents, which can be toggled between hydrophobic and hydrophilic forms by the addition or removal of carbon dioxide in the presence of water, are easily recyclable and may improve PHB processing methods. Here, we have shown the ability to dissolve PHB in two switchable solvents (N,N-dimethylbenzylamine and N,N-dimethylcyclohexylamine), precipitate PHB by the addition of water and carbon dioxide, and recycle the solvent for subsequent dissolution and precipitation cycles. We have also demonstrated the ability for N,N-dimethylbenzylamine to form gels with PHB which maintain their water/solvent content as the solvent is switched to a hydrophilic form. These results demonstrate the usefulness of switchable solvents as a recyclable platform for PHB processing and their ability to create unique materials.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100421"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000262/pdfft?md5=770d36b10a4551bb4f95ac8e7373c1ba&pid=1-s2.0-S2666086524000262-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cost-efficient method for green synthesis of novel derivatives lower-rim-connected bisresorcinarene macrocycles in large-scale by sodium p-styrenesulfonate 对苯乙烯磺酸钠大规模绿色合成新型衍生物下缘连接双resorcinarene大环的经济高效方法
Current Research in Green and Sustainable Chemistry Pub Date : 2024-01-01 DOI: 10.1016/j.crgsc.2024.100396
Azin Kharazmi , Ramin Ghorbani-Vaghei , Ardeshir Khazaei , Idris Karakaya , Rahman Karimi-Nami
{"title":"A cost-efficient method for green synthesis of novel derivatives lower-rim-connected bisresorcinarene macrocycles in large-scale by sodium p-styrenesulfonate","authors":"Azin Kharazmi ,&nbsp;Ramin Ghorbani-Vaghei ,&nbsp;Ardeshir Khazaei ,&nbsp;Idris Karakaya ,&nbsp;Rahman Karimi-Nami","doi":"10.1016/j.crgsc.2024.100396","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100396","url":null,"abstract":"<div><p>A novel, uncomplicated, and cost-effective methodology has been devised for the rapid synthesis of novel lower-rim-connected bisresorcinarene macrocycles. The incorporation of sodium <em>p</em>-styrenesulfonate (NaSS) facilitates the generation of a diverse array of products on a large scale, achieving high yields. Notably, the utilization of NaSS obviates the need for corrosive acids, and the absence of toxic solvents renders this reaction both environmentally friendly and economically advantageous. Furthermore, the process eliminates the necessity for column chromatography in product purification. The structural characterization of the synthesized derivatives was confirmed through comprehensive analyses, including FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, HR-Mass, and CHNO techniques.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100396"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000018/pdfft?md5=28181a17df5c3ef153ceeabcb0a8bf00&pid=1-s2.0-S2666086524000018-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139487673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fe-doped TiO2/PVDF-HFP electrospun membranes for tetracycline photocatalytic degradation under visible light 用于可见光下四环素光催化降解的掺铁 TiO2/PVDF-HFP 电纺丝膜
Current Research in Green and Sustainable Chemistry Pub Date : 2024-01-01 DOI: 10.1016/j.crgsc.2024.100424
Ghadeer Jalloul, Aya Hachem, Mohammad H. Hashem, Ahmad B. Albadarin, Mohammad N. Ahmad
{"title":"Fe-doped TiO2/PVDF-HFP electrospun membranes for tetracycline photocatalytic degradation under visible light","authors":"Ghadeer Jalloul,&nbsp;Aya Hachem,&nbsp;Mohammad H. Hashem,&nbsp;Ahmad B. Albadarin,&nbsp;Mohammad N. Ahmad","doi":"10.1016/j.crgsc.2024.100424","DOIUrl":"10.1016/j.crgsc.2024.100424","url":null,"abstract":"<div><p>Heterogeneous photocatalysis operated under visible light is considered an efficient and ecofriendly method to remove pharmaceuticals from water streams. However, the recovery of the nano-sized catalyst particles limits this technology to small-scale applications. In this study, we prepared Fe-doped P25 TiO<sub>2</sub> photocatalysts and immobilized them over PVDF-HFP electrospun membranes for the photocatalytic degradation of Tetracycline antibiotic under visible light. To ensure uniform distribution of the nanoparticles on the fibers, the electrospinning voltage and the weight percentage of TiO<sub>2</sub> were varied, and two preparation methods were applied to disperse the catalyst in the polymeric solution. In order to maximize the visible light exposure of the membranes, 3D printed membrane holders with square and circular shapes were designed to immerse the membrane in Tetracycline solution. The results showed that immobilizing P25 catalysts on the fibers of the membranes limited their visible light absorption when the light source was assembled on the top of the aqueous reaction medium. This occurred due to the membrane's opacity limited light penetration, resulting in uneven irradiation throughout its depth. Based on this, a new photocatalytic reactor design was proposed with immersed light illumination source to reduce the distance between the membrane and the light source for improved activation of the P25 particles. In this design, a 3D-printed vertical membrane holder was also included to accommodate a larger membrane surface area and therefore minimize the required spatial area for large industrial applications.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100424"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000298/pdfft?md5=2fb74c08885ee52bd8896686264d12ac&pid=1-s2.0-S2666086524000298-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization and evaluation of torrefied sugarcane bagasse to improve the fuel properties 焦化甘蔗渣的特性和评估,以改善燃料性能
Current Research in Green and Sustainable Chemistry Pub Date : 2024-01-01 DOI: 10.1016/j.crgsc.2023.100395
Muktar Abdu Kalifa, Nigus Gabbiye Habtu, Addis Lemessa Jembere, Melkamu Birlie Genet
{"title":"Characterization and evaluation of torrefied sugarcane bagasse to improve the fuel properties","authors":"Muktar Abdu Kalifa,&nbsp;Nigus Gabbiye Habtu,&nbsp;Addis Lemessa Jembere,&nbsp;Melkamu Birlie Genet","doi":"10.1016/j.crgsc.2023.100395","DOIUrl":"10.1016/j.crgsc.2023.100395","url":null,"abstract":"<div><p>Torrefaction is a promising method of treatment with a prospect toward Physco-chemical improvement and thermal upgrading of biomass. In the present study, the torrefaction of sugarcane bagasse in both dry and chemical treatment in comparison with the physical, chemical, and thermal properties of raw bagasse was investigated. Thermochemical torrefaction was carried out by pretreatment of raw bagasse with dilute sulfuric acid. The torrefaction temperature was carried out at a carried temperature (220–280 °C) and a torrefaction period (30–120 min) in a packed bed reactor under an inert environment, whereas dry torrefaction was performed using the same treatment without the addition of a chemical to the raw bagasse. Chars produced by chemical torrefaction were found with improved properties of heating value, energy, and bulk density at 280 °C and 120 min. Increasing temperature resulting in high fixed carbon content apparently decreases moisture content and volatile matter. The mass yield and energy yield were found to be decreased with temperature and time. The carbon content of torrefied bagasse was increased with temperature and time, whereas, hydrogen and oxygen content decreased due to the devolatilization reactions. It was able to upgrade HHV from 16.05 to 20.34 MJ/Kg in dry and 22.29 MJ/Kg in chemical torrefaction.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100395"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086523000413/pdfft?md5=6c49a725898097473a07f5d2f9067dd8&pid=1-s2.0-S2666086523000413-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of green microwave-assisted extraction of essential oil from lemon (Citrus limon) leaves: Bioactive, antioxidant and antimicrobial potential 微波辅助绿色提取柠檬(Citrus limon)叶精油的优化方法:生物活性、抗氧化和抗菌潜力
Current Research in Green and Sustainable Chemistry Pub Date : 2024-01-01 DOI: 10.1016/j.crgsc.2024.100413
Mst. Sarmina Yeasmin , Md. Jasim Uddin , Subarna Sandhani Dey , Jaytirmoy Barmon , Nayeema Talukder Ema , G.M. Masud Rana , Md. Mahmudur Rahman , Mohajira Begum , Lailatul Ferdousi , Supriya Ahmed , Md. Salim Khan , Mst. Hajera Khatun , Ali Ahsan Muzahid
{"title":"Optimization of green microwave-assisted extraction of essential oil from lemon (Citrus limon) leaves: Bioactive, antioxidant and antimicrobial potential","authors":"Mst. Sarmina Yeasmin ,&nbsp;Md. Jasim Uddin ,&nbsp;Subarna Sandhani Dey ,&nbsp;Jaytirmoy Barmon ,&nbsp;Nayeema Talukder Ema ,&nbsp;G.M. Masud Rana ,&nbsp;Md. Mahmudur Rahman ,&nbsp;Mohajira Begum ,&nbsp;Lailatul Ferdousi ,&nbsp;Supriya Ahmed ,&nbsp;Md. Salim Khan ,&nbsp;Mst. Hajera Khatun ,&nbsp;Ali Ahsan Muzahid","doi":"10.1016/j.crgsc.2024.100413","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100413","url":null,"abstract":"<div><p>This research delves into the analysis of essential oil derived from <em>Citrus limon</em> leaves cultivated in the northern region of Bangladesh, focusing on their potential attributes. The essential oil was extracted employing a microwave-assisted gravity station without using solvent. Optimization was carried out in terms of time, temperature and power as a function of oil yield. The study revealed the highest oil yield of 2.5 % after 50 min at 110 °C, maintaining a microwave power of 300 watt. Twenty-four (24) phyto-components were identified by Gas Chromatogram- Mass Spectrometer (GC-MS) where <span>d</span>-Limonene (34.10660 %) was dominant compound. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to assess the antioxidant activity of essential oil. Notably, essential oil displayed superior DPPH radical scavenging activity (IC<sub>50</sub> 8.57 ppm) compared to butylated hydroxytoluene (BHT) (IC<sub>50</sub> 10.63 ppm), a common antioxidant standard. Furthermore, a variety of harmful microorganisms were used to evaluate the antimicrobial efficacy. The extracted essential oil exhibited the strongest antimicrobial effectiveness against bacteria <em>Staphylococcus aureus</em> (ZOI-27.50 mm, MIC-7.8 μL/mL) and the fungi <em>Candida albicans</em> (ZOI-32.83 mm, MIC-1.95 μL/mL). These findings demonstrate the <em>Citrus limon</em> leaves essential oil contains bioactive components with strong antioxidant and antimicrobial properties. The extracted essential oil holds significant potential for applications in the foods, pharmaceuticals and cosmetic industries.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100413"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000183/pdfft?md5=e5bee2da1af3b64c9cb5e38b3d4b9eec&pid=1-s2.0-S2666086524000183-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140905706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The impact of thermal treatment parameters on the preservation of carbon fiber mechanical properties after reclamation 热处理参数对再生后碳纤维机械性能保持的影响
Current Research in Green and Sustainable Chemistry Pub Date : 2024-01-01 DOI: 10.1016/j.crgsc.2024.100431
Marina Corvo Alguacil , Kentaro Umeki , Sergejs Gaidukovs , Anda Barkāne , Shujie You , Roberts Joffe
{"title":"The impact of thermal treatment parameters on the preservation of carbon fiber mechanical properties after reclamation","authors":"Marina Corvo Alguacil ,&nbsp;Kentaro Umeki ,&nbsp;Sergejs Gaidukovs ,&nbsp;Anda Barkāne ,&nbsp;Shujie You ,&nbsp;Roberts Joffe","doi":"10.1016/j.crgsc.2024.100431","DOIUrl":"10.1016/j.crgsc.2024.100431","url":null,"abstract":"<div><div>Carbon fiber, despite its exceptional properties, remains underutilized due to monetary and environmental concerns. Concurrently, the imminent challenge associated with rising quantities of End-of-Life CFRP (carbon fiber reinforced polymer) demands the further development of recycling strategies. This study focuses on optimizing the recycling process parameters of pyrolysis and oxidation thermal treatment to maximize the retention of mechanical properties in the recycled fibers in the shortest process time. To assess the result of the pyrolysis, single fiber tensile tests were executed to measure strength and stiffness. Additionally, microscopy and spectroscopy studies were carried out to evaluate fiber geometry as well as surface quality. At the laboratory scale, experiments demonstrated that the combination of pyrolysis and oxidation yields clean, reusable fibers with mechanical properties suitable for secondary applications. The influence of various treatment parameters on the strength and stiffness of the recycled fibers was explored, establishing a clear correlation. The outcome is a set of optimized parameters that contribute to mechanical property retention, including a novel recycling method that allows for reduced processing times, as short as 10 min. This work paves the way for a more eco-friendly and cost-effective approach to harnessing the potential of carbon fiber in a wide range of applications while mitigating environmental concerns associated with landfill disposal.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100431"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges in the mechanical recycling and upcycling of mixed postconsumer recovered plastics (PCR): A review 消费后混合回收塑料 (PCR) 的机械再循环和升级再循环所面临的挑战:综述
Current Research in Green and Sustainable Chemistry Pub Date : 2024-01-01 DOI: 10.1016/j.crgsc.2024.100407
Tanyaradzwa S. Muzata, Laurent M. Matuana, Muhammad Rabnawaz
{"title":"Challenges in the mechanical recycling and upcycling of mixed postconsumer recovered plastics (PCR): A review","authors":"Tanyaradzwa S. Muzata,&nbsp;Laurent M. Matuana,&nbsp;Muhammad Rabnawaz","doi":"10.1016/j.crgsc.2024.100407","DOIUrl":"10.1016/j.crgsc.2024.100407","url":null,"abstract":"<div><p>The presence of chemically different and compositionally varying plastics in mixed postconsumer recovered plastic (PCR) presents daunting barriers to recycling and upcycling efforts. This review systematically outlines how different processing techniques and characterization methods can be implemented to improve PCR's mechanical recycling and upcycling processes. The review further addresses the recycling challenges in the processing of mixed plastics from PCR and how their mechanical properties can be enhanced by making use of different types of compatibilizers such as copolymers, Janus nanoparticles as well as different approaches such as solid-state pulverization and microfibrillarization. In addition, the state-of-the-art applications of recycled plastics usage in automotive and construction are reviewed.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100407"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000122/pdfft?md5=2238b22fe35d894f788679e4ba511d40&pid=1-s2.0-S2666086524000122-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信