Ahmed S. Abou-Elyazed , Amira K.F. Shaban , Ahmed I. Osman , Lobna A. Heikal , Hamdy F.M. Mohamed , Walid M.I. Hassan , Ahmed M. El-Nahas , Basem E. Keshta , Asmaa S. Hamouda
{"title":"基于 PET 废料的成本效益型 MIL-101(Cr)在生物柴油生产中的催化功效比较","authors":"Ahmed S. Abou-Elyazed , Amira K.F. Shaban , Ahmed I. Osman , Lobna A. Heikal , Hamdy F.M. Mohamed , Walid M.I. Hassan , Ahmed M. El-Nahas , Basem E. Keshta , Asmaa S. Hamouda","doi":"10.1016/j.crgsc.2024.100401","DOIUrl":null,"url":null,"abstract":"<div><p>Polyethylene terephthalate (PET) use has increased, causing more PET trash and environmental and health issues. Disposal and burning alone cannot solve this problem. Thus, PET recovery methods with low byproducts are the priority. The recycling rate is still below 30%, so different cleaning methods are being investigated. Therefore, studies have focused on extracting terephthalic acid from PET bottles for MOF synthesis to reduce their cost of production. Herein, MIL-101(Cr) was synthesized from PET bottles and used as a solid catalyst for oleic acid esterification with methanol to produce methyl oleate (biodiesel), an alternative energy source to fossil fuels—the highest biodiesel yields at 1:39 molar ratio of oleic acid to MeOH, 6 wt% loading, 65 °C, and 4 h reactions time were attained at 86.9 and 80% for MIL-101(Cr) on a pristine and scrap basis, respectively. The kinetic study revealed that activation energies were 25.27 kJ/mol and 28.3 kJ/mol for original and waste-derived MIL-101(Cr). The waste-derived MIL-101(Cr) was reused three times while five-time cycles for the original MIL-101(Cr).</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100401"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000067/pdfft?md5=cacff971fd0fefc9fc756ea60185b573&pid=1-s2.0-S2666086524000067-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparative catalytic efficacy of cost-effective MIL-101(Cr) based PET waste for biodiesel production\",\"authors\":\"Ahmed S. Abou-Elyazed , Amira K.F. Shaban , Ahmed I. Osman , Lobna A. Heikal , Hamdy F.M. Mohamed , Walid M.I. Hassan , Ahmed M. El-Nahas , Basem E. Keshta , Asmaa S. Hamouda\",\"doi\":\"10.1016/j.crgsc.2024.100401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Polyethylene terephthalate (PET) use has increased, causing more PET trash and environmental and health issues. Disposal and burning alone cannot solve this problem. Thus, PET recovery methods with low byproducts are the priority. The recycling rate is still below 30%, so different cleaning methods are being investigated. Therefore, studies have focused on extracting terephthalic acid from PET bottles for MOF synthesis to reduce their cost of production. Herein, MIL-101(Cr) was synthesized from PET bottles and used as a solid catalyst for oleic acid esterification with methanol to produce methyl oleate (biodiesel), an alternative energy source to fossil fuels—the highest biodiesel yields at 1:39 molar ratio of oleic acid to MeOH, 6 wt% loading, 65 °C, and 4 h reactions time were attained at 86.9 and 80% for MIL-101(Cr) on a pristine and scrap basis, respectively. The kinetic study revealed that activation energies were 25.27 kJ/mol and 28.3 kJ/mol for original and waste-derived MIL-101(Cr). The waste-derived MIL-101(Cr) was reused three times while five-time cycles for the original MIL-101(Cr).</p></div>\",\"PeriodicalId\":296,\"journal\":{\"name\":\"Current Research in Green and Sustainable Chemistry\",\"volume\":\"8 \",\"pages\":\"Article 100401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666086524000067/pdfft?md5=cacff971fd0fefc9fc756ea60185b573&pid=1-s2.0-S2666086524000067-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666086524000067\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086524000067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
摘要
聚对苯二甲酸乙二醇酯(PET)的使用量不断增加,造成了更多的 PET 垃圾以及环境和健康问题。仅靠处理和焚烧无法解决这一问题。因此,副产品少的 PET 回收方法成为当务之急。目前的回收率仍低于 30%,因此正在研究不同的清洁方法。因此,研究主要集中在从 PET 瓶中提取对苯二甲酸来合成 MOF,以降低其生产成本。在此,研究人员从 PET 瓶中合成了 MIL-101(Cr),并将其用作固体催化剂,用于油酸与甲醇的酯化反应,以生产油酸甲酯(生物柴油),生物柴油是化石燃料的替代能源--在油酸与 MeOH 的比例为 1:39M、负载量为 6 wt%、温度为 65 °C、反应时间为 4 小时的条件下,MIL-101(Cr)的原始生物柴油产率为 86.9%,报废生物柴油产率为 80%。动力学研究表明,原始 MIL-101(Cr) 和废物衍生 MIL-101(Cr) 的活化能分别为 25.27 kJ/mol 和 28.3 kJ/mol。废物衍生的 MIL-101(Cr)可重复使用三次,而原始的 MIL-101(Cr)可重复使用五次。
Comparative catalytic efficacy of cost-effective MIL-101(Cr) based PET waste for biodiesel production
Polyethylene terephthalate (PET) use has increased, causing more PET trash and environmental and health issues. Disposal and burning alone cannot solve this problem. Thus, PET recovery methods with low byproducts are the priority. The recycling rate is still below 30%, so different cleaning methods are being investigated. Therefore, studies have focused on extracting terephthalic acid from PET bottles for MOF synthesis to reduce their cost of production. Herein, MIL-101(Cr) was synthesized from PET bottles and used as a solid catalyst for oleic acid esterification with methanol to produce methyl oleate (biodiesel), an alternative energy source to fossil fuels—the highest biodiesel yields at 1:39 molar ratio of oleic acid to MeOH, 6 wt% loading, 65 °C, and 4 h reactions time were attained at 86.9 and 80% for MIL-101(Cr) on a pristine and scrap basis, respectively. The kinetic study revealed that activation energies were 25.27 kJ/mol and 28.3 kJ/mol for original and waste-derived MIL-101(Cr). The waste-derived MIL-101(Cr) was reused three times while five-time cycles for the original MIL-101(Cr).