{"title":"微波辅助绿色提取柠檬(Citrus limon)叶精油的优化方法:生物活性、抗氧化和抗菌潜力","authors":"Mst. Sarmina Yeasmin , Md. Jasim Uddin , Subarna Sandhani Dey , Jaytirmoy Barmon , Nayeema Talukder Ema , G.M. Masud Rana , Md. Mahmudur Rahman , Mohajira Begum , Lailatul Ferdousi , Supriya Ahmed , Md. Salim Khan , Mst. Hajera Khatun , Ali Ahsan Muzahid","doi":"10.1016/j.crgsc.2024.100413","DOIUrl":null,"url":null,"abstract":"<div><p>This research delves into the analysis of essential oil derived from <em>Citrus limon</em> leaves cultivated in the northern region of Bangladesh, focusing on their potential attributes. The essential oil was extracted employing a microwave-assisted gravity station without using solvent. Optimization was carried out in terms of time, temperature and power as a function of oil yield. The study revealed the highest oil yield of 2.5 % after 50 min at 110 °C, maintaining a microwave power of 300 watt. Twenty-four (24) phyto-components were identified by Gas Chromatogram- Mass Spectrometer (GC-MS) where <span>d</span>-Limonene (34.10660 %) was dominant compound. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to assess the antioxidant activity of essential oil. Notably, essential oil displayed superior DPPH radical scavenging activity (IC<sub>50</sub> 8.57 ppm) compared to butylated hydroxytoluene (BHT) (IC<sub>50</sub> 10.63 ppm), a common antioxidant standard. Furthermore, a variety of harmful microorganisms were used to evaluate the antimicrobial efficacy. The extracted essential oil exhibited the strongest antimicrobial effectiveness against bacteria <em>Staphylococcus aureus</em> (ZOI-27.50 mm, MIC-7.8 μL/mL) and the fungi <em>Candida albicans</em> (ZOI-32.83 mm, MIC-1.95 μL/mL). These findings demonstrate the <em>Citrus limon</em> leaves essential oil contains bioactive components with strong antioxidant and antimicrobial properties. The extracted essential oil holds significant potential for applications in the foods, pharmaceuticals and cosmetic industries.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100413"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000183/pdfft?md5=e5bee2da1af3b64c9cb5e38b3d4b9eec&pid=1-s2.0-S2666086524000183-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimization of green microwave-assisted extraction of essential oil from lemon (Citrus limon) leaves: Bioactive, antioxidant and antimicrobial potential\",\"authors\":\"Mst. Sarmina Yeasmin , Md. Jasim Uddin , Subarna Sandhani Dey , Jaytirmoy Barmon , Nayeema Talukder Ema , G.M. Masud Rana , Md. Mahmudur Rahman , Mohajira Begum , Lailatul Ferdousi , Supriya Ahmed , Md. Salim Khan , Mst. Hajera Khatun , Ali Ahsan Muzahid\",\"doi\":\"10.1016/j.crgsc.2024.100413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research delves into the analysis of essential oil derived from <em>Citrus limon</em> leaves cultivated in the northern region of Bangladesh, focusing on their potential attributes. The essential oil was extracted employing a microwave-assisted gravity station without using solvent. Optimization was carried out in terms of time, temperature and power as a function of oil yield. The study revealed the highest oil yield of 2.5 % after 50 min at 110 °C, maintaining a microwave power of 300 watt. Twenty-four (24) phyto-components were identified by Gas Chromatogram- Mass Spectrometer (GC-MS) where <span>d</span>-Limonene (34.10660 %) was dominant compound. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to assess the antioxidant activity of essential oil. Notably, essential oil displayed superior DPPH radical scavenging activity (IC<sub>50</sub> 8.57 ppm) compared to butylated hydroxytoluene (BHT) (IC<sub>50</sub> 10.63 ppm), a common antioxidant standard. Furthermore, a variety of harmful microorganisms were used to evaluate the antimicrobial efficacy. The extracted essential oil exhibited the strongest antimicrobial effectiveness against bacteria <em>Staphylococcus aureus</em> (ZOI-27.50 mm, MIC-7.8 μL/mL) and the fungi <em>Candida albicans</em> (ZOI-32.83 mm, MIC-1.95 μL/mL). These findings demonstrate the <em>Citrus limon</em> leaves essential oil contains bioactive components with strong antioxidant and antimicrobial properties. The extracted essential oil holds significant potential for applications in the foods, pharmaceuticals and cosmetic industries.</p></div>\",\"PeriodicalId\":296,\"journal\":{\"name\":\"Current Research in Green and Sustainable Chemistry\",\"volume\":\"8 \",\"pages\":\"Article 100413\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666086524000183/pdfft?md5=e5bee2da1af3b64c9cb5e38b3d4b9eec&pid=1-s2.0-S2666086524000183-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Research in Green and Sustainable Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666086524000183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666086524000183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
Optimization of green microwave-assisted extraction of essential oil from lemon (Citrus limon) leaves: Bioactive, antioxidant and antimicrobial potential
This research delves into the analysis of essential oil derived from Citrus limon leaves cultivated in the northern region of Bangladesh, focusing on their potential attributes. The essential oil was extracted employing a microwave-assisted gravity station without using solvent. Optimization was carried out in terms of time, temperature and power as a function of oil yield. The study revealed the highest oil yield of 2.5 % after 50 min at 110 °C, maintaining a microwave power of 300 watt. Twenty-four (24) phyto-components were identified by Gas Chromatogram- Mass Spectrometer (GC-MS) where d-Limonene (34.10660 %) was dominant compound. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to assess the antioxidant activity of essential oil. Notably, essential oil displayed superior DPPH radical scavenging activity (IC50 8.57 ppm) compared to butylated hydroxytoluene (BHT) (IC50 10.63 ppm), a common antioxidant standard. Furthermore, a variety of harmful microorganisms were used to evaluate the antimicrobial efficacy. The extracted essential oil exhibited the strongest antimicrobial effectiveness against bacteria Staphylococcus aureus (ZOI-27.50 mm, MIC-7.8 μL/mL) and the fungi Candida albicans (ZOI-32.83 mm, MIC-1.95 μL/mL). These findings demonstrate the Citrus limon leaves essential oil contains bioactive components with strong antioxidant and antimicrobial properties. The extracted essential oil holds significant potential for applications in the foods, pharmaceuticals and cosmetic industries.