Marina Corvo Alguacil , Kentaro Umeki , Sergejs Gaidukovs , Anda Barkāne , Shujie You , Roberts Joffe
{"title":"The impact of thermal treatment parameters on the preservation of carbon fiber mechanical properties after reclamation","authors":"Marina Corvo Alguacil , Kentaro Umeki , Sergejs Gaidukovs , Anda Barkāne , Shujie You , Roberts Joffe","doi":"10.1016/j.crgsc.2024.100431","DOIUrl":"10.1016/j.crgsc.2024.100431","url":null,"abstract":"<div><div>Carbon fiber, despite its exceptional properties, remains underutilized due to monetary and environmental concerns. Concurrently, the imminent challenge associated with rising quantities of End-of-Life CFRP (carbon fiber reinforced polymer) demands the further development of recycling strategies. This study focuses on optimizing the recycling process parameters of pyrolysis and oxidation thermal treatment to maximize the retention of mechanical properties in the recycled fibers in the shortest process time. To assess the result of the pyrolysis, single fiber tensile tests were executed to measure strength and stiffness. Additionally, microscopy and spectroscopy studies were carried out to evaluate fiber geometry as well as surface quality. At the laboratory scale, experiments demonstrated that the combination of pyrolysis and oxidation yields clean, reusable fibers with mechanical properties suitable for secondary applications. The influence of various treatment parameters on the strength and stiffness of the recycled fibers was explored, establishing a clear correlation. The outcome is a set of optimized parameters that contribute to mechanical property retention, including a novel recycling method that allows for reduced processing times, as short as 10 min. This work paves the way for a more eco-friendly and cost-effective approach to harnessing the potential of carbon fiber in a wide range of applications while mitigating environmental concerns associated with landfill disposal.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100431"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142529672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tanyaradzwa S. Muzata, Laurent M. Matuana, Muhammad Rabnawaz
{"title":"Challenges in the mechanical recycling and upcycling of mixed postconsumer recovered plastics (PCR): A review","authors":"Tanyaradzwa S. Muzata, Laurent M. Matuana, Muhammad Rabnawaz","doi":"10.1016/j.crgsc.2024.100407","DOIUrl":"10.1016/j.crgsc.2024.100407","url":null,"abstract":"<div><p>The presence of chemically different and compositionally varying plastics in mixed postconsumer recovered plastic (PCR) presents daunting barriers to recycling and upcycling efforts. This review systematically outlines how different processing techniques and characterization methods can be implemented to improve PCR's mechanical recycling and upcycling processes. The review further addresses the recycling challenges in the processing of mixed plastics from PCR and how their mechanical properties can be enhanced by making use of different types of compatibilizers such as copolymers, Janus nanoparticles as well as different approaches such as solid-state pulverization and microfibrillarization. In addition, the state-of-the-art applications of recycled plastics usage in automotive and construction are reviewed.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100407"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000122/pdfft?md5=2238b22fe35d894f788679e4ba511d40&pid=1-s2.0-S2666086524000122-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147882","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manjunath Veeranna Shinnur, MariaPia Pedeferri, Maria Vittoria Diamanti
{"title":"Properties and photocatalytic applications of black TiO2 produced by thermal or plasma hydrogenation","authors":"Manjunath Veeranna Shinnur, MariaPia Pedeferri, Maria Vittoria Diamanti","doi":"10.1016/j.crgsc.2024.100415","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100415","url":null,"abstract":"<div><p>TiO<sub>2</sub> nanomaterial photocatalysts for energy and environmental applications have attracted the interest of researchers in recent decades. The broad bandgap (3–3.2 eV), which limits the quantity of light absorption, and the relatively high charge-carrier recombination, which limits photocatalytic activity, are the key bottlenecks. The discovery of black TiO<sub>2</sub> in 2011 sparked global research attention and renewed optimism for solving this challenge. The presence of defects such as Ti<sup>3+</sup> species and oxygen vacancies at the surface of black TiO<sub>2</sub> nanostructures – so called due to the color assumed by the oxide following a reduction process - is responsible for enhancing the optical absorption of UV to visible light. This review focuses on recent advancements in the development of black TiO<sub>2</sub> nanomaterials, including description of the synthesis processes, focused on plasma and thermal methods to convert TiO<sub>2</sub> to black TiO<sub>2</sub>, discussion of black TiO<sub>2</sub> properties, and diverse applications of black TiO<sub>2</sub>, and concludes by addressing some essential concerns that must be tackled to unleash the desired future developments, particularly for solar energy production and pollutants decomposition.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100415"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000201/pdfft?md5=43c463a86c552ab9c7e27069df7bc3e2&pid=1-s2.0-S2666086524000201-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141241082","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen Xia Ling Felicia , Kobun Rovina , Nasir Md Nur Aqilah , Abdul Aziz Jaziri
{"title":"Optimisation of supercritical fluid extraction of orange (Citrus sinenis L.) peel essential oil and its physicochemical properties","authors":"Wen Xia Ling Felicia , Kobun Rovina , Nasir Md Nur Aqilah , Abdul Aziz Jaziri","doi":"10.1016/j.crgsc.2024.100410","DOIUrl":"https://doi.org/10.1016/j.crgsc.2024.100410","url":null,"abstract":"<div><p>In this study, the choice of supercritical fluid extraction as a renewable alternative for extracting orange peel essential oil (OPEO) was motivated by concerns about sustainability with conventional solvent extraction methods. The physical and chemical characteristics of OPEO were examined to assess its potential as a sustainable resource. The extraction process was optimised, and the ideal conditions determined were 317.51 min of extraction time at 74.85 °C with a solvent-to-sample ratio of 4. Analysis of the extracted OPEO revealed significant values for saponification (121.67 mg KOH/g), acid (4.13 mg KOH/g), ester (117.54 mg KOH/g), and free fatty acid (1.56 mg KOH/g) content, demonstrating its composition. Notably, key ingredients such as Limonene (43.96%), α-pinene (15.60%), β-myrcene (10.21%), <strong><em>γ</em></strong>-terpinene (5.00%), and α-terpineol (4.15%) were found in high proportions according to chemical composition analysis. Furthermore, OPEO exhibited excellent antioxidant properties with an IC50 value of 7.73 ± 2.00 mg/mL and displayed notable antimicrobial activity against various microorganisms, including <em>P. aeruginosa</em> (17.7 ± 0.6 mm), <em>E. coli</em> (11.0 ± 0.0 mm), <em>K. pneumoniae</em> (10.7 ± 0.6 mm), and <em>S. aureus</em> (10.3 ± 0.6 mm). These findings have significant implications for the flavor and fragrance sector, as well as for the food preservation industry.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100410"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000158/pdfft?md5=54b15db8be7e5d93a78a235b4642bbd2&pid=1-s2.0-S2666086524000158-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140321040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Engineering stable Ti3+ defects in a titanium dioxide matrix by wet bead-milling: Visible-light assisted efficient photocatalytic hydrogen production from water","authors":"Shoichi Somekawa , Sayaka Yanagida , Naoki Tachibana , Hiroaki Imai , Shigeru Nakazawa","doi":"10.1016/j.crgsc.2024.100423","DOIUrl":"10.1016/j.crgsc.2024.100423","url":null,"abstract":"<div><div>Solar-driven hydrogen production technologies are of increasing interest. In this work, Ti<sup>3+</sup> was incorporated into titanium dioxide via wet bead-milling, resulting in enhanced photocatalytic activity under both UV and visible light irradiation. The broad optical absorption obtained from the presence of Ti<sup>3+</sup> ranged from the visible to near-infrared regions of the spectrum (specifically from 400 to over 900 nm) and this absorption could be enhanced by increasing the diameter of the beads used for wet milling. The hydrogen production rate from water in response to ultraviolet (UV)-visible light with ethanol as a sacrificial reagent was also found to vary depending on the bead diameter. Producing the optimal level of Ti<sup>3+</sup> incorporation in the titanium oxide matrix while maintaining a high specific surface area increased the extent of hydrogen production during water decomposition. A sample prepared using 0.3 mm diameter beads exhibited the highest hydrogen production rate of 145 μmol h<sup>−1</sup> g<sup>−1</sup>, which was 15 times that obtained from commercially available anatase-type titanium dioxide having higher specific surface area. The hydrogen production rate under only UV light (<400 nm) was decreased to one-ninth of that obtained using both UV and visible light simultaneously. No hydrogen gas was generated in trials using only visible light (>410 nm). These results indicate that visible light significantly promoted the photocatalytic reaction when both UV and visible light were irradiated simultaneously.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100423"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143156171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alireza Rahmani , Zahra Torkshavand , Khadije Yari , Amir Shabanloo , Maryam Foroghi , Bahman Gholazrkhogaste , Roya Najafi-Vosough
{"title":"Preparation of low-cost acidic modified-adsorbent from agricultural waste palm leaf to remove methylene blue from aqueous solutions","authors":"Alireza Rahmani , Zahra Torkshavand , Khadije Yari , Amir Shabanloo , Maryam Foroghi , Bahman Gholazrkhogaste , Roya Najafi-Vosough","doi":"10.1016/j.crgsc.2024.100426","DOIUrl":"10.1016/j.crgsc.2024.100426","url":null,"abstract":"<div><p>Disposing wastewater from textile industries and dyes into water bodies has aesthetic effects on the nature of water, it can also cause serious adverse environmental impacts on the water ecosystem by reducing sunlight penetration and photosynthetic reactions. Adsorption is one of the most common methods for removal of toxic pollutants due to its easy and cheap operation. Using agricultural waste to prepare cheap and simple adsorbents is an alternative method for commercial carbons. In this research, a cost-effective adsorbent was fabricated from palm leaf agricultural waste during two stages of carbonization and modification with acid. XRD and FTIR analyses were used to characterize the carbon-based adsorbent. The funding indicated that the removal performance of methylene blue at an initial concentration of 25 mg/L is about 99.6 % after 60 min of reaction at solution pH 7. However, the highest adsorption capacity of 175.6 mg/g was achieved at the adsorbent dose of 25 mg. The adsorption isotherm and kinetics evaluation indicated that the adsorption of methylene blue on the adsorbent prepared from palm leaf waste is chemical heterogeneous adsorption. The findings of the present research promise the development of a cost-effective adsorbent from agricultural waste to remove dye compounds from industrial wastewater at near-neutral conditions.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100426"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000316/pdfft?md5=a897694005bf5007db3d7041ddd0573c&pid=1-s2.0-S2666086524000316-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142148794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ronan Farrell , Yvonne J. Cortese , Declan M. Devine , Noel Gately , Margarita Rueda , Lorena Rodriguez , Romina Pezzoli
{"title":"The function and properties of common food packaging materials and their suitability for reusable packaging: The transition from a linear to circular economy","authors":"Ronan Farrell , Yvonne J. Cortese , Declan M. Devine , Noel Gately , Margarita Rueda , Lorena Rodriguez , Romina Pezzoli","doi":"10.1016/j.crgsc.2024.100429","DOIUrl":"10.1016/j.crgsc.2024.100429","url":null,"abstract":"<div><div>For the last few decades, plastics have been the material of choice for food packaging applications. Combining mechanical performance with barrier properties and transparency, plastics have been a cost-effective solution for safely distributing food produce. Unfortunately, most plastic packaging is based on a linear model where packaging is designed for single use, resulting in vast amounts of post-consumer waste being generated annually. In response to this concern, many public and private bodies globally have set ambitious sustainable development targets with the goal of reducing plastic waste. To assist in meeting these targets, the implementation of reusable packaging schemes has been suggested. These schemes aim to prolong the lifespan and worth of plastic packaging and have the potential to reduce the environmental impact of single-use plastics, provided all aspects of their design are carefully considered. One design aspect often neglected is the influence of repeated use on the properties of the packaging material. Very little literature exists investigating the effects that repeated contamination and washing can have on the material's intrinsic properties. This review article aims to comprehensively review the functions and properties of various food packaging materials to assess their suitability for reusable food packaging applications.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100429"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142328247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Borzova, K. Schollbach, F. Gauvin, H.J.H. Brouwers
{"title":"Sustainable ambient pressure-dried silica aerogel from waste glass","authors":"M. Borzova, K. Schollbach, F. Gauvin, H.J.H. Brouwers","doi":"10.1016/j.crgsc.2024.100425","DOIUrl":"10.1016/j.crgsc.2024.100425","url":null,"abstract":"<div><p>Silica aerogels are outstanding insulation materials, and applying them as building insulation could significantly enhance the energy efficiency of dwellings. However, the current high price of aerogels hinders their use on large scales, in part due to the embedded costs of production such as raw materials and their energy-intensive drying process. This study proposes a method relying on the upcycling of waste mixed fine soda lime glass as a silica source for subsequent aerogel synthesis via ambient pressure drying (APD). The optimal conditions for the dissolution of silica from waste glass were found to be a 24-h reaction with a 4 M NaOH solution under 80 °C and a liquid-to-solid ratio of 10. The investigation of silica dissolution considers the balance between the yield of silica and the practical scalability. The resulting aerogel is hydrophobic, has a thermal conductivity of 26 mW m<sup>−1</sup> K<sup>−1</sup>, a specific surface area of 608 m<sup>2</sup> g<sup>−1</sup>, and a density of 121 kg/m<sup>3</sup>. These properties are comparable to commercial aerogel, and to a reference aerogel made from commercial sodium silicate. Additionally, the heat treatment of aerogel at 500 °C for 4 h further improved its properties, suggesting a potential for targeted property enhancements.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100425"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000304/pdfft?md5=fdb86bcd69c9a7303775e47e3f60947f&pid=1-s2.0-S2666086524000304-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141953872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naiara C. Farias , Ludivine Coudert , Declan Devine , Golnoosh Abdeali , Romina Pezzoli
{"title":"Repeated mechanical recycling of biodegradable polymers: PLA exhibits less deterioration than PBAT/PLA blend","authors":"Naiara C. Farias , Ludivine Coudert , Declan Devine , Golnoosh Abdeali , Romina Pezzoli","doi":"10.1016/j.crgsc.2024.100430","DOIUrl":"10.1016/j.crgsc.2024.100430","url":null,"abstract":"<div><div>Biodegradable polymers have been extensively researched as alternatives to non-biodegradable fossil-based polymers. Although they reduce environmental impact, their production competes with land needed for food crops. Therefore, exploring their reuse and recycling is essential for enhancing their circular economy and sustainability. This study evaluated the recyclability of commercially available biodegradable polymers, poly (lactic acid) (PLA) and its blend with poly (butylene adipate co-terephthalate) (PBAT), across three cycles of mechanical recycling. Each cycle simulates plastic production, shelf-life, washing, and reprocessing stages. Samples were analysed after molding, ageing, and washing for each cycle using Differential Scanning Calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), tensile testing, and rheological analysis to track changes in crystallization, chemical structure, viscosity, and mechanical behaviors. Results indicated that both PLA and PBAT/PLA (55/45 wt%) blend showed a rise in crystallinity (<span><math><mrow><msub><mi>X</mi><mi>c</mi></msub></mrow></math></span>) due to the annealing effect of the ageing and washing. No changes in FTIR spectra and <span><math><mrow><msub><mi>X</mi><mi>c</mi></msub></mrow></math></span> were detected after one recycling cycle, indicating stability. After three reprocessing cycles, second heating crystallinity rose from 2 % to 13 % for PLA and from 2 % to 12 % for PBAT/PLA (45 wt% PLA), indicating morphological changes from degradation and molecular weight reduction. Despite higher crystallinity and a more moderate decline in complex viscosity and storage modulus than PLA, PBAT/PLA showed reduced mechanical properties, with a 90 % drop in elongation at break and nearly 50 % in stress at break, highlighting the need for interventions to control PBAT degradation. PLA maintained strong mechanical properties, demonstrating its potential as a compostable recyclable material.</div></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"9 ","pages":"Article 100430"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142654482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abuchi Elebo, Sani Uba, Patricia Adamma Ekwumemgbo, Victor Olatunji Ajibola
{"title":"Unravelling adsorption potential of expired clindamycin as corrosion inhibitor at mild Steel/HCl interface via response surface methodology, artificial neural network, electrochemical, and computational strategies","authors":"Abuchi Elebo, Sani Uba, Patricia Adamma Ekwumemgbo, Victor Olatunji Ajibola","doi":"10.1016/j.crgsc.2024.100402","DOIUrl":"10.1016/j.crgsc.2024.100402","url":null,"abstract":"<div><p>Corrosion has produced unprecedented disintegration of metals, constituting an imminent danger to mankind and triggering catastrophic global economic losses. The effectiveness of expired clindamycin (ECLI) as a low-cost corrosion control agent for mild steel was investigated utilising response surface methodology (RSM), artificial neural network (ANN), potentiodynamic polarization (PDP), electrochemical impedance spectroscopy (EIS), quantum chemical computation (QCC), and molecular dynamic simulation (MDS) studies in conjunction with thermometric and gasometric protocols at different HCl concentrations. The RSM model demonstrated an outstanding level of accuracy in predicting the mild steel corrosion inhibition efficiency (IE), the volume of hydrogen gas (VHG), reaction number (RN), and corrosion rate (CR). The model was significantly influenced by the operational parameters that were investigated, such as temperature (299–333 K), ECLI concentrations (100–500 mg/L), immersion time (1–6 h), and acid concentration (0.5–2.5 M). It was observed that as ECLI concentration increases, the VHG, RN, and CR decreased per time as well as % IE increased. The thermometric, gasometric, PDP, and EIS results showed percentage inhibition efficiency of 69.10, 69.49, 83.17, and 77.87 %, respectively. PDP revealed that ECLI operates as a mixed type of inhibitor, and EIS indicated that the inhibition process involves charge transfer. The Langmuir isotherm suits better and accurately describes the ECLI adsorption process on mild steel. The electron transfer propensity of the ECLI on the metal surface is measured by QCC using the DFT approach. MDS was implemented to establish the optimal adsorption orientation between ECLI and Fe (110). The inspection of surface morphology by SEM displayed the formation of a blanket-like layer on the steel by ECLI. To validate the experimental results, RSM and ANN prediction models were utilised, which were evaluated using a normal plot of residual, predicted versus actual, and residual versus run, and were found to be effective modelling tools. This study illustrates that ECLI can be utilised as a potent and affordable mild steel inhibitor, even at high acid concentrations.</p></div>","PeriodicalId":296,"journal":{"name":"Current Research in Green and Sustainable Chemistry","volume":"8 ","pages":"Article 100402"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666086524000079/pdfft?md5=2099c5d34dea19ea4a41e68ea726c9db&pid=1-s2.0-S2666086524000079-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140275673","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}