Current Opinion in Solid State & Materials Science最新文献

筛选
英文 中文
Advancements in fluorescence lifetime imaging microscopy Instrumentation: Towards high speed and 3D 荧光寿命成像显微镜仪器的进步:实现高速和三维
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2024-03-18 DOI: 10.1016/j.cossms.2024.101147
Jongchan Park, Liang Gao
{"title":"Advancements in fluorescence lifetime imaging microscopy Instrumentation: Towards high speed and 3D","authors":"Jongchan Park,&nbsp;Liang Gao","doi":"10.1016/j.cossms.2024.101147","DOIUrl":"https://doi.org/10.1016/j.cossms.2024.101147","url":null,"abstract":"<div><p>Fluorescence lifetime imaging microscopy (FLIM) is a powerful imaging tool offering molecular specific insights into samples through the measurement of fluorescence decay time, with promising applications in diverse research fields. However, to acquire two-dimensional lifetime images, conventional FLIM relies on extensive scanning in both the spatial and temporal domain, resulting in much slower acquisition rates compared to intensity-based approaches. This problem is further magnified in three-dimensional imaging, as it necessitates additional scanning along the depth axis. Recent advancements have aimed to enhance the speed and three-dimensional imaging capabilities of FLIM. This review explores the progress made in addressing these challenges and discusses potential directions for future developments in FLIM instrumentation.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"30 ","pages":"Article 101147"},"PeriodicalIF":11.0,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359028624000135/pdfft?md5=2d79ee53350f24617aa31efe1e6413b9&pid=1-s2.0-S1359028624000135-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140160293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Challenges and opportunities in searching for Rashba-Dresselhaus materials for efficient spin-charge interconversion at room temperature 寻找用于室温下高效自旋电荷互转的拉什巴-德雷斯豪斯材料的挑战与机遇
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2024-03-01 DOI: 10.1016/j.cossms.2024.101145
Zixu Wang , Zhizhong Chen , Rui Xu , Hanyu Zhu , Ravishankar Sundararaman , Jian Shi
{"title":"Challenges and opportunities in searching for Rashba-Dresselhaus materials for efficient spin-charge interconversion at room temperature","authors":"Zixu Wang ,&nbsp;Zhizhong Chen ,&nbsp;Rui Xu ,&nbsp;Hanyu Zhu ,&nbsp;Ravishankar Sundararaman ,&nbsp;Jian Shi","doi":"10.1016/j.cossms.2024.101145","DOIUrl":"https://doi.org/10.1016/j.cossms.2024.101145","url":null,"abstract":"<div><p>Spintronic logic devices require efficient spin-charge interconversion: converting charge current to spin current and spin current to charge current. In spin–orbit materials that are regarded as the most promising candidate for spintronic logic devices, one mechanism that is responsible for spin-charge interconversion is Edelstein and inverse Edelstein effects based on spin-momentum locking in materials with Rashba-type spin–orbit coupling. Over last decade, there has been rapid progresses for increasing interconversion efficiencies due to the Edelstein effect in a few Rashba-Dresselhaus materials and topological insulators, making Rashba spin-momentum locking a promising technological solution for spin–orbit logic devices. However, despite the rapid progress that leads to high spin-charge interconversion efficiency at cryogenic temperatures, the room-temperature efficiency needed for technological applications is still low. This paper presents our understanding on the challenges and opportunities in searching for Rashba-Dresselhaus materials for efficient spin-charge interconversion at room temperature by focusing on materials properties such as Rashba coefficients, momentum relaxation times, spin-momentum locking relations and electrical conductivities.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"29 ","pages":"Article 101145"},"PeriodicalIF":11.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139992468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Review on thermal transport and lattice dynamics of high-entropy alloys containing Ni 含镍高熵合金的热传输和晶格动力学综述
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2024-03-01 DOI: 10.1016/j.cossms.2024.101146
Byungjun Kang , Seunghwan Lee , Wonsik Lee , Kook Noh Yoon , Eun Soo Park , Hyejin Jang
{"title":"Review on thermal transport and lattice dynamics of high-entropy alloys containing Ni","authors":"Byungjun Kang ,&nbsp;Seunghwan Lee ,&nbsp;Wonsik Lee ,&nbsp;Kook Noh Yoon ,&nbsp;Eun Soo Park ,&nbsp;Hyejin Jang","doi":"10.1016/j.cossms.2024.101146","DOIUrl":"https://doi.org/10.1016/j.cossms.2024.101146","url":null,"abstract":"<div><p>High-entropy alloys (HEAs) including Ni and other 3<em>d</em> transition metals present a unique class of materials characterized by single phase solid solutions in face-centered cubic structure with complicated chemical disorder, in terms of atomic size, mass, and force constants. While they are renowned for excellent mechanical properties in extreme environment, their thermal transport properties are underexplored, despite the importance in relevant applications. This article comprehensively reviews the experimental and theoretical research on thermal transport and lattice dynamics in Ni-based alloys focusing on HEAs, along with fundamental theories for electron and phonon thermal conductivity in metals and alloys. The influence of the disorders is discussed for Ni-based alloys, from binary to quinary, which particularly reveals the importance of the interatomic force constant disorder. Future research is expected to further advance the understanding of interactions between electrons and phonons and microscopic mechanisms of phonon transport, as well as methodologies for extreme environment.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"29 ","pages":"Article 101146"},"PeriodicalIF":11.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140134312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The optimal dimensions of hexagonal-boron nitride nanosheets as thermally conductive fillers: The thinner the better? 六方氮化硼纳米片作为导热填料的最佳尺寸:越薄越好?
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2024-02-22 DOI: 10.1016/j.cossms.2024.101143
Kimiyasu Sato, Yusuke Imai
{"title":"The optimal dimensions of hexagonal-boron nitride nanosheets as thermally conductive fillers: The thinner the better?","authors":"Kimiyasu Sato,&nbsp;Yusuke Imai","doi":"10.1016/j.cossms.2024.101143","DOIUrl":"https://doi.org/10.1016/j.cossms.2024.101143","url":null,"abstract":"<div><p>Layered solid particles such as hexagonal boron nitride (h-BN) are widely used as thermally conductive fillers in polymer composites. Exfoliated sheets of the layered particles (nanosheets) have been considered a significant asset to enhance thermal conductivity of the composites. Theoretical and experimental studies have reported that maximally exfoliated h-BN nanosheets (BNNS) would possess superior thermal conductivity. Accordingly, considerable efforts have been devoted to development of the single- or few-layered BNNS as thermally conductive fillers. As for thermal conductivity, however, the nanosheet fillers cannot be free from several drawbacks. Taking h-BN as an example, we discuss if the thinner nanosheets are always superior solid fillers. Based on significant preceding papers in the related disciplines, positive and negative factors of the thermally conductive nanosheets are examined in the short review. Contrary to common belief, 10 layers BNNS or slightly thicker ones were found to be the most valuable as thermally conductive fillers. Since the methodology presented here avails for other layered solid particles, it would advance the technological field of the functional composite materials. More broadly, in the present paper, we attempted to bridge the huge gap between knowledge about nano-sized materials and functional advancement of practically utilized materials.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"29 ","pages":"Article 101143"},"PeriodicalIF":11.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139936803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mapping information and light: Trends of AI-enabled metaphotonics 映射信息与光:人工智能元光子学的发展趋势
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2024-02-21 DOI: 10.1016/j.cossms.2024.101144
Seokho Lee , Cherry Park , Junsuk Rho
{"title":"Mapping information and light: Trends of AI-enabled metaphotonics","authors":"Seokho Lee ,&nbsp;Cherry Park ,&nbsp;Junsuk Rho","doi":"10.1016/j.cossms.2024.101144","DOIUrl":"https://doi.org/10.1016/j.cossms.2024.101144","url":null,"abstract":"<div><p>A dynamic convergence between metaphotonics and artificial intelligence (AI) is underway. In this review, AI is conceptualized as a tool for mapping input and output data. From this perspective, an analysis is conducted on how input and output data are set, aiming to discern the following three key trends in the utilization of AI within the field of metaphotonics. 1. The advancement of forward modeling and inverse design, utilizing AI for mapping metaphotonic device design and the corresponding optical properties. 2. Optical neural networks (ONNs), an emerging field that implements AI using metaphotonics by processing information within electromagnetic waves. 3. The field of metasensors, employing metamaterials to encode optical information for measurement and processing using AI to demonstrate high performance sensing. We round up the review with our perspectives on AI and metaphotonics research and discuss the future trends, challenges, and developments.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"29 ","pages":"Article 101144"},"PeriodicalIF":11.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139915036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intrinsically stretchable sensory-neuromorphic system for sign language translation 用于手语翻译的本征可拉伸感知超构系统
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2024-02-13 DOI: 10.1016/j.cossms.2024.101142
Jiyong Yoon , Jaehyon Kim , Hyunjin Jung , Jeong-Ick Cho , Jin-Hong Park , Mikyung Shin , In Soo Kim , Joohoon Kang , Donghee Son
{"title":"Intrinsically stretchable sensory-neuromorphic system for sign language translation","authors":"Jiyong Yoon ,&nbsp;Jaehyon Kim ,&nbsp;Hyunjin Jung ,&nbsp;Jeong-Ick Cho ,&nbsp;Jin-Hong Park ,&nbsp;Mikyung Shin ,&nbsp;In Soo Kim ,&nbsp;Joohoon Kang ,&nbsp;Donghee Son","doi":"10.1016/j.cossms.2024.101142","DOIUrl":"https://doi.org/10.1016/j.cossms.2024.101142","url":null,"abstract":"<div><p>Soft wearable strain sensors with mechanically invisible interactions with skin tissue have enabled precise diagnosis and effective treatment of neurological movement disorders in a closed-loop manner that quantitatively measures motion-related strains without noise intervention and provides feedback information. Because of the immediate interpretation from motion-driven sign language to general conversation, such on-skin strain sensors have recently been considered promising candidates for facilitating communication either within deaf and hard-of-hearing communities or among people with disabilities. Despite advances in soft strain sensors, the lack of intrinsically stretchable neuromorphic modules that mimic biological synapses and efficiently perform neural computation and dynamics has resulted in inaccurate translation of sign language. In this study, we present an intrinsically stretchable organic electrochemical transistor (is-OECT) synapse integrated with crack-based strain sensors conformally mounted onto fingers to implement an interactive sensory-neuromorphic system (iSNS) capable of overcoming auditory impediments. The is-OECT synapse in the iSNS shows stable electrical performance (a large number of states (∼100 states) and a linear weight update) in the skin deformation range (approximately 30%). Based on pre-trained data gathered from on-finger strain-sensing information, the iSNS wirelessly translates sign language while maintaining high accuracy.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"29 ","pages":"Article 101142"},"PeriodicalIF":11.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139732450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Footwear for piezoelectric energy harvesting: A comprehensive review on prototypes development, applications and future prospects 用于压电能量收集的鞋类:关于原型开发、应用和未来前景的全面综述
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2024-01-08 DOI: 10.1016/j.cossms.2023.101134
Gurpreet Singh , Moolchand Sharma , Raj Kiran , Saptarshi Karmakar , Rahul Vaish
{"title":"Footwear for piezoelectric energy harvesting: A comprehensive review on prototypes development, applications and future prospects","authors":"Gurpreet Singh ,&nbsp;Moolchand Sharma ,&nbsp;Raj Kiran ,&nbsp;Saptarshi Karmakar ,&nbsp;Rahul Vaish","doi":"10.1016/j.cossms.2023.101134","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101134","url":null,"abstract":"<div><p>The extreme consumption of non-renewable energy sources poses serious concerns of environment pollution and energy crisis across the globe, which stimulate the research on exploration of alternative energy technologies capable of harvesting available energy in the ambient environment. Mechanical energy is ubiquitously available in the ambient environment, which can be converted into electrical energy using piezoelectric energy harvesters (PEH) based on piezoelectric effect. PEH have evolved as a non-conventional, feasible and clean solution to meet energy requirement worldwide and played an important role in powering of several portable electronic devices, wireless sensor nodes, and medical implants. PEH enables self-powered functioning of devices along with a longer lifespan. The merits of this technology lies in its easy implementation, miniaturization, and high energy conversion efficiency. The utilization of waste mechanical energy available from the human body (e.g., natural movements of humans) in piezoelectric energy harvesters is one of the prime interests of researchers. The footwear equipped with piezoelectric material is one such novel innovation in the area of piezoelectric energy harvesting which utilizes the vibration generated during human body movements, thereby converting direct mechanical impacts into useful energy. This review article starts with providing the basic fundamental information on piezoelectric effect, piezoelectric materials and piezoelectric energy harvesting technology. The prime objective of this article is to provide the comprehensive review of recent developments made in designing footwear prototypes for piezoelectric energy harvesting and their emerging applications. Interestingly, this review also discusses the important patented technologies based on piezoelectric footwear energy harvesting. At last, this review discusses the merits and limitations of available footwear prototypes for piezoelectric energy-harvesting and provides the new directions for researchers in this innovative area of energy harvesting.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"28 ","pages":"Article 101134"},"PeriodicalIF":11.0,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359028623000797/pdfft?md5=9ec547383991d0754ef91330b8009d50&pid=1-s2.0-S1359028623000797-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139398932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent progress in analysis of strain-induced phenomena in irradiated metallic materials and advanced alloys using SEM-EBSD in-situ tensile testing 利用 SEM-EBSD 原位拉伸试验分析辐照金属材料和先进合金应变诱导现象的最新进展
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-12-22 DOI: 10.1016/j.cossms.2023.101132
M.N. Gussev , D.A. McClintock , T.S. Byun , T.G. Lach
{"title":"Recent progress in analysis of strain-induced phenomena in irradiated metallic materials and advanced alloys using SEM-EBSD in-situ tensile testing","authors":"M.N. Gussev ,&nbsp;D.A. McClintock ,&nbsp;T.S. Byun ,&nbsp;T.G. Lach","doi":"10.1016/j.cossms.2023.101132","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101132","url":null,"abstract":"<div><p>In-situ mechanical testing in a scanning electron microscope (SEM) equipped with an electron backscatter diffraction (EBSD) system has quickly gained popularity, particularly because of its rich experimental outcomes. In this work, the advantages and challenges of this approach are systemized and critically discussed in relation to testing irradiated metallic materials and novel materials in development. Key observations and experimental results are evaluated for irradiated austenitic stainless steels, an additively manufactured (AM) 316 stainless steel, and a modern accident-tolerant FeCrAl alloy. Various deformation mechanisms are discussed using experimental EBSD datasets, including dislocation channeling in irradiated alloys, strain localization, lattice rotation, texture development, twinning, phase instability, and microfracture events. Several rare strain-induced phenomena are described, such as grain boundary dissolution in FeCrAl alloy and twinning boundary migration in AM 316 stainless steel. These results demonstrate the advantages and capability of EBSD-assisted experiments to inform assessment and understanding of the complexity of deformation processes at different microstructure scales. Some challenges and impediments associated with this approach are also discussed, along with recommendations for future research advancements.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"28 ","pages":"Article 101132"},"PeriodicalIF":11.0,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359028623000773/pdfft?md5=9b0b609291c416976025a13d6083cb8a&pid=1-s2.0-S1359028623000773-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138839509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Machine learning models in phononic metamaterials 声波超材料中的机器学习模型
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-12-19 DOI: 10.1016/j.cossms.2023.101133
Chen-Xu Liu , Gui-Lan Yu , Zhanli Liu
{"title":"Machine learning models in phononic metamaterials","authors":"Chen-Xu Liu ,&nbsp;Gui-Lan Yu ,&nbsp;Zhanli Liu","doi":"10.1016/j.cossms.2023.101133","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101133","url":null,"abstract":"<div><p>Machine learning opens up a new avenue for advancing the development of phononic crystals and elastic metamaterials. Numerous learning models have been employed and developed to address various challenges in the field of phononic metamaterials. Here, we provide an overview of mainstream machine learning models applied to phononic metamaterials, discuss their capabilities as well as limitations, and explore potential directions for future research.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"28 ","pages":"Article 101133"},"PeriodicalIF":11.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359028623000785/pdfft?md5=f0802ffd6a7e6261dda409bdb7466cb4&pid=1-s2.0-S1359028623000785-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138769571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deep learning for nano-photonic materials – The solution to everything!? 纳米光子材料的深度学习--一切的解决方案!?
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-12-14 DOI: 10.1016/j.cossms.2023.101129
Peter R. Wiecha
{"title":"Deep learning for nano-photonic materials – The solution to everything!?","authors":"Peter R. Wiecha","doi":"10.1016/j.cossms.2023.101129","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101129","url":null,"abstract":"<div><p>Deep learning is currently being hyped as an almost magical tool for solving all kinds of difficult problems that computers have not been able to solve in the past. Particularly in the fields of computer vision and natural language processing, spectacular results have been achieved. The hype has now infiltrated several scientific communities. In (nano-) photonics, researchers are trying to apply deep learning to all kinds of forward and inverse problems. A particularly challenging problem is for instance the rational design of nanophotonic materials and devices. In this opinion article, I will first discuss the public expectations of deep learning and give an overview of the quite different scales at which actors from industry and research are operating their deep learning models. I then examine the weaknesses and dangers associated with deep learning. Finally, I’ll discuss the key strengths that make this new set of statistical methods so attractive, and review a personal selection of opportunities that shouldn’t be missed in the current developments.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"28 ","pages":"Article 101129"},"PeriodicalIF":11.0,"publicationDate":"2023-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359028623000748/pdfft?md5=ec20ef6cac4d984fec96a6226b069be3&pid=1-s2.0-S1359028623000748-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138657132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信