{"title":"Review on development of metal-oxide and 2-D material based gas sensors under light-activation","authors":"Sourav Deb, Anibrata Mondal, Y. Ashok Kumar Reddy","doi":"10.1016/j.cossms.2024.101160","DOIUrl":null,"url":null,"abstract":"<div><p>In this modern era, the necessity of a safe environment with a swift detection of even minute concentrations of hazardous and combustible gases has spurred significance in the advancement of gas sensor technology. In this aspect, the room temperature operable gas sensors have marked their importance by ensuring the safe detection of combustible gases. Nonetheless, the incomplete recovery of such gas sensors requires thermal activation, which entails several limitations. Therefore, the light-activation of gas sensors has garnered considerable attention owing to its compactness and cost-effective operations. The light-activation generates the electron-hole pairs which activate the sensing surface and modulate the charge carrier concentration, thereby enhancing the gas-sensing performances. In this review, the gas-sensing performances of various photoactive sensing materials including metal oxides and two-dimensional materials under light irradiation have been discussed. The gas sensors based on metal oxide and two-dimensional materials have shown significant performance in terms of response, as well as sharp response and recovery times under both ultra-violet and visible light illumination. Finally, this review emphasizes the challenges and future scopes associated with the light-activated room temperature operable gas sensors, which could lead a pathway toward the development of an ultrafast gas sensor.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"30 ","pages":"Article 101160"},"PeriodicalIF":12.2000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028624000263","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this modern era, the necessity of a safe environment with a swift detection of even minute concentrations of hazardous and combustible gases has spurred significance in the advancement of gas sensor technology. In this aspect, the room temperature operable gas sensors have marked their importance by ensuring the safe detection of combustible gases. Nonetheless, the incomplete recovery of such gas sensors requires thermal activation, which entails several limitations. Therefore, the light-activation of gas sensors has garnered considerable attention owing to its compactness and cost-effective operations. The light-activation generates the electron-hole pairs which activate the sensing surface and modulate the charge carrier concentration, thereby enhancing the gas-sensing performances. In this review, the gas-sensing performances of various photoactive sensing materials including metal oxides and two-dimensional materials under light irradiation have been discussed. The gas sensors based on metal oxide and two-dimensional materials have shown significant performance in terms of response, as well as sharp response and recovery times under both ultra-violet and visible light illumination. Finally, this review emphasizes the challenges and future scopes associated with the light-activated room temperature operable gas sensors, which could lead a pathway toward the development of an ultrafast gas sensor.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field