The optimal dimensions of hexagonal-boron nitride nanosheets as thermally conductive fillers: The thinner the better?

IF 12.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Kimiyasu Sato, Yusuke Imai
{"title":"The optimal dimensions of hexagonal-boron nitride nanosheets as thermally conductive fillers: The thinner the better?","authors":"Kimiyasu Sato,&nbsp;Yusuke Imai","doi":"10.1016/j.cossms.2024.101143","DOIUrl":null,"url":null,"abstract":"<div><p>Layered solid particles such as hexagonal boron nitride (h-BN) are widely used as thermally conductive fillers in polymer composites. Exfoliated sheets of the layered particles (nanosheets) have been considered a significant asset to enhance thermal conductivity of the composites. Theoretical and experimental studies have reported that maximally exfoliated h-BN nanosheets (BNNS) would possess superior thermal conductivity. Accordingly, considerable efforts have been devoted to development of the single- or few-layered BNNS as thermally conductive fillers. As for thermal conductivity, however, the nanosheet fillers cannot be free from several drawbacks. Taking h-BN as an example, we discuss if the thinner nanosheets are always superior solid fillers. Based on significant preceding papers in the related disciplines, positive and negative factors of the thermally conductive nanosheets are examined in the short review. Contrary to common belief, 10 layers BNNS or slightly thicker ones were found to be the most valuable as thermally conductive fillers. Since the methodology presented here avails for other layered solid particles, it would advance the technological field of the functional composite materials. More broadly, in the present paper, we attempted to bridge the huge gap between knowledge about nano-sized materials and functional advancement of practically utilized materials.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"29 ","pages":"Article 101143"},"PeriodicalIF":12.2000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028624000093","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Layered solid particles such as hexagonal boron nitride (h-BN) are widely used as thermally conductive fillers in polymer composites. Exfoliated sheets of the layered particles (nanosheets) have been considered a significant asset to enhance thermal conductivity of the composites. Theoretical and experimental studies have reported that maximally exfoliated h-BN nanosheets (BNNS) would possess superior thermal conductivity. Accordingly, considerable efforts have been devoted to development of the single- or few-layered BNNS as thermally conductive fillers. As for thermal conductivity, however, the nanosheet fillers cannot be free from several drawbacks. Taking h-BN as an example, we discuss if the thinner nanosheets are always superior solid fillers. Based on significant preceding papers in the related disciplines, positive and negative factors of the thermally conductive nanosheets are examined in the short review. Contrary to common belief, 10 layers BNNS or slightly thicker ones were found to be the most valuable as thermally conductive fillers. Since the methodology presented here avails for other layered solid particles, it would advance the technological field of the functional composite materials. More broadly, in the present paper, we attempted to bridge the huge gap between knowledge about nano-sized materials and functional advancement of practically utilized materials.

六方氮化硼纳米片作为导热填料的最佳尺寸:越薄越好?
六方氮化硼(h-BN)等层状固体颗粒被广泛用作聚合物复合材料中的导热填料。层状颗粒的剥离片(纳米片)被认为是提高复合材料导热性的重要因素。理论和实验研究表明,最大程度剥离的 h-BN 纳米片(BNNS)具有卓越的导热性。因此,人们致力于开发单层或少层 BNNS 作为导热填料。然而,就导热性而言,纳米片状填料不可能没有几个缺点。以 h-BN 为例,我们将讨论更薄的纳米片是否总是更好的固体填料。在相关学科的重要前沿论文的基础上,我们对导热纳米片的积极因素和消极因素进行了研究。与一般看法相反,10 层 BNNS 或稍厚的 BNNS 被认为是最有价值的导热填料。由于本文介绍的方法适用于其他层状固体颗粒,因此将推动功能复合材料技术领域的发展。更广泛地说,在本文中,我们试图弥合纳米级材料知识与实际应用材料功能进步之间的巨大差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Solid State & Materials Science
Current Opinion in Solid State & Materials Science 工程技术-材料科学:综合
CiteScore
21.10
自引率
3.60%
发文量
41
审稿时长
47 days
期刊介绍: Title: Current Opinion in Solid State & Materials Science Journal Overview: Aims to provide a snapshot of the latest research and advances in materials science Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research Promotes cross-fertilization of ideas across an increasingly interdisciplinary field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信