Current Opinion in Solid State & Materials Science最新文献

筛选
英文 中文
The next generation of nanoindentation and small-scale mechanical testing 下一代的纳米压痕和小规模的机械测试
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-10-07 DOI: 10.1016/j.cossms.2023.101115
Marco Sebastiani
{"title":"The next generation of nanoindentation and small-scale mechanical testing","authors":"Marco Sebastiani","doi":"10.1016/j.cossms.2023.101115","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101115","url":null,"abstract":"","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 6","pages":"Article 101115"},"PeriodicalIF":11.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91985333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-speed nanoindentation mapping: A review of recent advances and applications 高速纳米压痕制图:最新进展和应用综述
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-10-01 DOI: 10.1016/j.cossms.2023.101107
Edoardo Rossi , Jeffrey M. Wheeler , Marco Sebastiani
{"title":"High-speed nanoindentation mapping: A review of recent advances and applications","authors":"Edoardo Rossi ,&nbsp;Jeffrey M. Wheeler ,&nbsp;Marco Sebastiani","doi":"10.1016/j.cossms.2023.101107","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101107","url":null,"abstract":"<div><p><strong>High-Speed Nanoindentation Mapping (HSNM)</strong> has been recently developed and established as a novel enabling technology for fast and reliable assessment of small-scale mechanical properties of heterogeneous materials over large areas. <strong>HSNM</strong> allows for one complete indentation cycle per second, including approach, contact detection, load, unload, and movement to the n<sup>th</sup> indent location, thus enabling high-resolution, spatially resolved hardness (<em>H</em>) and elastic modulus (<em>E</em>) mapping.</p><p>This article reviews the recent advancements in <strong>HSNM</strong> and its application to support the design, synthesis, and characterization of advanced materials, potentially impacting the ongoing digital and green transitions. A comprehensive review is given of (a) the main experimental features and critical issues of the protocols in comparison with traditional quasi-static nanoindentation, (b) the advanced data analysis tools employed, and (c) the combination with other microscopy and spectroscopy methods for multi-technique correlative applications. Finally, the relevance of HSNM for selected classes of materials is discussed, including (i) additively manufactured metals, (ii) advanced alloys, (iii) composite materials and cement, highlighting the potential for matrix-reinforcement mechanical characterization and optimization routes, (iv) coatings for industrial components and energy/transportation, discussing damage progression identification at the micro-structural level, and (v) natural materials. Ultimately, future perspectives are presented and discussed.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 5","pages":"Article 101107"},"PeriodicalIF":11.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359028623000529/pdfft?md5=b489c0b4e396990e296ce1ac4af9afd4&pid=1-s2.0-S1359028623000529-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92041974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Helix-specific properties and applications in synthetic polypeptides 螺旋特异性及其在合成多肽中的应用
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-10-01 DOI: 10.1016/j.cossms.2023.101104
Ning Li , Yuheng Lei , Ziyuan Song, Lichen Yin
{"title":"Helix-specific properties and applications in synthetic polypeptides","authors":"Ning Li ,&nbsp;Yuheng Lei ,&nbsp;Ziyuan Song,&nbsp;Lichen Yin","doi":"10.1016/j.cossms.2023.101104","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101104","url":null,"abstract":"<div><p>Polypeptides obtained from the ring-opening polymerization of <em>N</em><span>-carboxyanhydrides, as the synthetic analogues of natural proteins, have drawn broad interests during the recent three decades. Unlike other synthetic polymers, polypeptides form ordered secondary structures like α-helices and β-sheets, which offer conformation-specific functions that are not observed in unstructured polymers. In this article, we summarized the unique structural features of α-helical polypeptides compared to their random-coiled analogues, and reviewed the helix-associated assembly behaviors and biomedical functions based on the structural differences. In addition, the characterization and modulation of polypeptide conformations were also discussed. We believe this review will shed light on the future design of synthetic polypeptides with helix-specific properties, further expanding the scope of polypeptide materials.</span></p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 5","pages":"Article 101104"},"PeriodicalIF":11.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91955702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent research progress in hydrogen embrittlement of additively manufactured metals – A review 增材金属氢脆研究进展综述
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-10-01 DOI: 10.1016/j.cossms.2023.101106
Ju Yao, Qiyang Tan, Jeffrey Venezuela, Andrej Atrens, Ming-Xing Zhang
{"title":"Recent research progress in hydrogen embrittlement of additively manufactured metals – A review","authors":"Ju Yao,&nbsp;Qiyang Tan,&nbsp;Jeffrey Venezuela,&nbsp;Andrej Atrens,&nbsp;Ming-Xing Zhang","doi":"10.1016/j.cossms.2023.101106","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101106","url":null,"abstract":"<div><p>Hydrogen is considered as a primary energy carrier for the hydrogen economy. However, hydrogen embrittlement (HE) is an inescapable problem that needs to be solved because metals, particularly steels, are commonly used in the transportation and storage of hydrogen, and because HE occurs in high-performance structural components in contact with moisture or hydrogen. In particular, HE concerns of additively produced alloys should be addressed, because additive manufacturing (AM) can provide significant advantages in the manufacturing of such structural components. This review overviews the recent research progress in HE of metals fabricated using AM. This review introduces AM and HE and summarises and discusses (i) the factors that influence the HE of AM metals, (ii) possible mechanisms of HE, (iii) the differences and similarities of HE behaviour between metals processed by AM and those produced through conventional manufacturing processes, and (iv) the current challenges and research gaps of HE in AM metals. The review covers structural steels, titanium alloys, tool steels, nickel-based superalloys, stainless steels and high-entropy alloys.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 5","pages":"Article 101106"},"PeriodicalIF":11.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359028623000517/pdfft?md5=38ee2b74d5737ba8fec68aca9609b64a&pid=1-s2.0-S1359028623000517-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92135388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent advances in nanomechanical and in situ testing techniques: Towards extreme conditions 纳米机械和原位测试技术的最新进展:走向极端条件
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-09-30 DOI: 10.1016/j.cossms.2023.101108
Daniel Kiener , Michael Wurmshuber , Markus Alfreider , Gerald J.K. Schaffar , Verena Maier-Kiener
{"title":"Recent advances in nanomechanical and in situ testing techniques: Towards extreme conditions","authors":"Daniel Kiener ,&nbsp;Michael Wurmshuber ,&nbsp;Markus Alfreider ,&nbsp;Gerald J.K. Schaffar ,&nbsp;Verena Maier-Kiener","doi":"10.1016/j.cossms.2023.101108","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101108","url":null,"abstract":"<div><p>Nanoindentation based techniques were significantly enhanced by continuous stiffness monitoring capabilities. In essence, this allowed to expand from point-wise discrete measurement of hardness and elastic modulus towards advanced plastic characterization routines, spanning the whole rate-dependent spectrum from steady state creep properties via quasi static flow curves to impact or brittle fracture. While representing a significant step forwards already, these techniques can tremendously benefit from additional or complementary input provided by <em>in situ</em> or <em>operando</em> experiments. In fact, by combining and merging these approaches, impressive advances were made towards well controlled nanomechanical investigations at various non-ambient conditions. Here we will discuss some novel experimental avenues facilitated by deliberate extreme environments, and also indicate how future improvements and enhancements will potentially provide previously unseen insights into fundamental material behavior at extreme conditions.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 6","pages":"Article 101108"},"PeriodicalIF":11.0,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41083840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Tailoring the microstructure and mechanical properties of (CrMnFeCoNi)100-xCx high-entropy alloys: Machine learning, experimental validation, and mathematical modeling 定制(CrMnFeCoNi)100-xCx高熵合金的微观结构和力学性能:机器学习,实验验证和数学建模
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-09-16 DOI: 10.1016/j.cossms.2023.101105
Mohammad Reza Zamani , Milad Roostaei , Hamed Mirzadeh , Mehdi Malekan , Min Song
{"title":"Tailoring the microstructure and mechanical properties of (CrMnFeCoNi)100-xCx high-entropy alloys: Machine learning, experimental validation, and mathematical modeling","authors":"Mohammad Reza Zamani ,&nbsp;Milad Roostaei ,&nbsp;Hamed Mirzadeh ,&nbsp;Mehdi Malekan ,&nbsp;Min Song","doi":"10.1016/j.cossms.2023.101105","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101105","url":null,"abstract":"<div><p>As a common thermomechanical treatment route, “cold rolling and annealing” is widely used for the processing and grain refinement of interstitial-containing high-entropy alloys (HEAs). The interrelationship between the parameters of this process, the content of interstitial elements, and their interactions are outstanding challenges and areas of open discussion. Accordingly, the data-driven machine learning approach is a favorable choice for tuning the microstructure and mechanical properties, which needs to be systematically investigated. In the present work, these subjects were addressed in terms of correlating the thermomechanical processing parameters and chemical composition with the recrystallization and grain growth behaviors, grain size, carbide precipitation, and the resulting tensile yield stress for the model (CrMnFeCoNi)<sub>100-</sub><em><sub>x</sub></em>C<em><sub>x</sub></em> HEAs. For this purpose, machine learning models based on adaptive neuro-fuzzy inference system (ANFIS), backpropagation artificial neural network (BP-ANN), and support network machine (SVM), as well as mathematical relationships and equations for the contribution of each strengthening mechanism were proposed and verified by extensive experimental work, which shed light on the design and prediction of the microstructure and properties of HEAs.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 5","pages":"Article 101105"},"PeriodicalIF":11.0,"publicationDate":"2023-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"6727370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amorphous oxide semiconductors: From fundamental properties to practical applications 非晶氧化物半导体:从基本特性到实际应用
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-08-01 DOI: 10.1016/j.cossms.2023.101092
Bojing Lu , Fei Zhuge , Yi Zhao , Yu-Jia Zeng , Liqiang Zhang , Jingyun Huang , Zhizhen Ye , Jianguo Lu
{"title":"Amorphous oxide semiconductors: From fundamental properties to practical applications","authors":"Bojing Lu ,&nbsp;Fei Zhuge ,&nbsp;Yi Zhao ,&nbsp;Yu-Jia Zeng ,&nbsp;Liqiang Zhang ,&nbsp;Jingyun Huang ,&nbsp;Zhizhen Ye ,&nbsp;Jianguo Lu","doi":"10.1016/j.cossms.2023.101092","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101092","url":null,"abstract":"<div><p>Amorphous oxide semiconductors (AOSs) have exceptional features of high visible transparency, high carrier mobility, excellent uniformity, and low-temperature growth process, making them promising in the electronic and information industry. InGaZnO is the most widely studied AOS and has been applied in commercial, which, however, contains rare and precious indium. For sustainable development, a diversity of In-free AOSs have been designed and proposed, which are attracted more and more attention. There have been several reviews on AOSs mainly centred on InGaZnO; in contrast, the review on In-free AOSs is not available at present. In this work, we provide a comprehensive review on In-free AOSs from fundamental properties to practical applications. Various In-free AOSs available in literatures are introduced, with the focus on ZnSnO-based AOSs. Thin-film transistors (TFTs) based on In-free AOSs are investigated in detail, which are the key device for next-generation transparent and flexible displays. Also, the applications in transparent electrodes, sensors, memristors, synaptic devices, and circuits are introduced. This review is expected to provide a guide to well understand the state-of-the-art principles, materials, devices, fabrication, applications, and perspectives of In-free AOSs.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 4","pages":"Article 101092"},"PeriodicalIF":11.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72248410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent advances in describing and driving crystal nucleation using machine learning and artificial intelligence 利用机器学习和人工智能描述和驱动晶体成核的最新进展
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-08-01 DOI: 10.1016/j.cossms.2023.101093
Eric R. Beyerle , Ziyue Zou , Pratyush Tiwary
{"title":"Recent advances in describing and driving crystal nucleation using machine learning and artificial intelligence","authors":"Eric R. Beyerle ,&nbsp;Ziyue Zou ,&nbsp;Pratyush Tiwary","doi":"10.1016/j.cossms.2023.101093","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101093","url":null,"abstract":"<div><p>With the advent of faster computer processors and especially graphics processing units (GPUs) over the last few decades, the use of data-intensive machine learning (ML) and artificial intelligence (AI) has increased greatly, and the study of crystal nucleation has been one of the beneficiaries. In this review, we outline how ML and AI have been applied to address four outstanding difficulties of crystal nucleation: how to discover better reaction coordinates (RCs) for describing accurately non-classical nucleation situations; the development of more accurate force fields for describing the nucleation of multiple polymorphs or phases for a single system; more robust identification methods for determining crystal phases and structures; and as a method to yield improved course-grained models for studying nucleation.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 4","pages":"Article 101093"},"PeriodicalIF":11.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72248411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nanoindentation in more than one dimension – Experimental challenges and opportunities 纳米压痕在多个维度-实验的挑战和机遇
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-08-01 DOI: 10.1016/j.cossms.2023.101100
John B. Pethica
{"title":"Nanoindentation in more than one dimension – Experimental challenges and opportunities","authors":"John B. Pethica","doi":"10.1016/j.cossms.2023.101100","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101100","url":null,"abstract":"<div><p>The current status of nanoindentation apparatus and the requirements for extension to more than one dimension of loading is described. It is possible, though not trivial, to adequately characterise the stiffnesses and couplings present in a frictional contact and thus expand the present use of nanoindentation to important new areas. The example of static friction is discussed to show that complete machine characterisation is required if true interface mechanical properties and friction coefficients are to be correctly measured.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 4","pages":"Article 101100"},"PeriodicalIF":11.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359028623000451/pdfft?md5=697264f7700b68503cf93209a05a34b5&pid=1-s2.0-S1359028623000451-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92039209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Machine learning aided nanoindentation: A review of the current state and future perspectives 机器学习辅助纳米压痕:现状和未来展望的回顾
IF 11 2区 材料科学
Current Opinion in Solid State & Materials Science Pub Date : 2023-08-01 DOI: 10.1016/j.cossms.2023.101091
Eli Saùl Puchi-Cabrera , Edoardo Rossi , Giuseppe Sansonetti , Marco Sebastiani , Edoardo Bemporad
{"title":"Machine learning aided nanoindentation: A review of the current state and future perspectives","authors":"Eli Saùl Puchi-Cabrera ,&nbsp;Edoardo Rossi ,&nbsp;Giuseppe Sansonetti ,&nbsp;Marco Sebastiani ,&nbsp;Edoardo Bemporad","doi":"10.1016/j.cossms.2023.101091","DOIUrl":"https://doi.org/10.1016/j.cossms.2023.101091","url":null,"abstract":"<div><p>The solution of instrumented indentation inverse problems by physically-based models still represents a complex challenge yet to be solved in metallurgy and materials science. In recent years, Machine Learning (ML) tools have emerged as a feasible and more efficient alternative to extract complex microstructure-property correlations from instrumented indentation data in advanced materials. On this basis, the main objective of this review article is to summarize the extent to which different ML tools have been recently employed in the analysis of both numerical and experimental data obtained by instrumented indentation testing, either using spherical or sharp indenters, particularly by nanoindentation. Also, the impact of using ML could have in better understanding the microstructure-mechanical properties-performance relationships of a wide range of materials tested at this length scale has been addressed.</p><p>The analysis of the recent literature indicates that a combination of advanced nanomechanical/microstructural characterization with finite element simulation and different ML algorithms constitutes a powerful tool to bring ground-breaking innovation in materials science. These research means can be employed not only for extracting mechanical properties of both homogeneous and heterogeneous materials at multiple length scales, but also could assist in understanding how these properties change with the compositional and microstructural in-service modifications. Furthermore, they can be used for design and synthesis of novel multi-phase materials.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"27 4","pages":"Article 101091"},"PeriodicalIF":11.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"1751244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信