M. Nakajima, Y. Igarashi, Masaru Takeuchi, Nagoki Hisamoto, Y. Hasegawa, T. Fukuda
{"title":"Higher precision rotational manipulation of C. elegans by microchannel","authors":"M. Nakajima, Y. Igarashi, Masaru Takeuchi, Nagoki Hisamoto, Y. Hasegawa, T. Fukuda","doi":"10.1109/NANO.2017.8117380","DOIUrl":"https://doi.org/10.1109/NANO.2017.8117380","url":null,"abstract":"Rotation manipulation of Caenorhabditis elegans (C. elegans) is presented for higher precision by a microchannel. The C. elegans was trapped within a biocompatible gel bead to rotate by a rotational motor. An alginate was used to form the gel bead. Without immobilization treatment by a sodium azide, the C. elegans moves during solidification of alginate. Then, a cavity was happened in the alginate gel bead. On the other hand, C. elegans was trapped without any cavity after immobilization treatment. The stopping and recovery motions of C. elegans were evaluated through the immobilization treatment experimentally. Finally, the eccentricity of rotational manipulation was evaluated with/without centering by a microchannel. The eccentricity was 35 % higher with the microchannel and high precision rotation was achieved at 0.03 degrees/step of actuator.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122158685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nile J. Bunce, R. E. Jimenez, V. I. Petsinger, R. Gupta, S. Karna
{"title":"Mixed protein templated fluorescent gold-nanoclusters allow folic acid sensing","authors":"Nile J. Bunce, R. E. Jimenez, V. I. Petsinger, R. Gupta, S. Karna","doi":"10.1109/NANO.2017.8117340","DOIUrl":"https://doi.org/10.1109/NANO.2017.8117340","url":null,"abstract":"Protein templated nanoclusters, specifically gold nanoclusters (AuNCs), have attracted a great deal of attention in the recent years due to their biocompatibility, intense fluorescence, sensing and imaging capabilities. Often, expensive and exotic proteins with limited environmental, chemical, and thermal stabilities have been used. Herein, we present a facile and low cost, synthesis of thermally and environmentally stable, photoactive AuNCs. The protein chosen in this study is chicken egg white (EW), which contains approximately 148 different proteins including ovalbumin, lysosomes, ovotransferrin and tryptophan. The fluorescence emission spectrum of the albumen-templated AuNCs are controllable via pH of the solution. The color tunable EW:AuNC exhibit a high degree of sensitivity to folic acid (FA), offering a sensitive sensor platform for simultaneous sensing and imaging of the vitamin.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"256 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124209097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiqiang Liao, Yubo Gao, Yanyan Deng, Chunhui Du, Shuo Zhang, Q.P. Lin, M. Zhang
{"title":"On-current tunable carbon nanotube thin-film transistor by SiO2 passivation layer","authors":"Zhiqiang Liao, Yubo Gao, Yanyan Deng, Chunhui Du, Shuo Zhang, Q.P. Lin, M. Zhang","doi":"10.1109/NANO.2017.8117473","DOIUrl":"https://doi.org/10.1109/NANO.2017.8117473","url":null,"abstract":"A concept of tuning the on-current for p-type carbon nanotube thin film transistors (CNT TFTs) by SiO2 passivation layer has been proposed, which meets the different current density requirement for macroelectronic applications. The adsorbed oxygen molecules shift the fermi level down towards valence band, which decreases the barrier height between CNTs and electrodes for holes, so that an as-made CNT TFT with titanium or gold electrode exhibits dominant p-type conduction behavior although the intrinsic behavior of carbon nanotube (CNT) is bipolar. In order to tune the on-current of the p-type CNT TFTs, annealing process in high temperature and SiO2 passivation layer by Plasma Enhanced Chemical Vapor Deposition are used to desorb and prevent oxygen molecules from adsorbing onto the channel again. The methods for forming passivation layer are industry-compatible. Important factors affecting the tuning performance include the thickness and the length of the channel layer are studied in this paper. Besides, the mechanism of the tuning process is disclosed. We found the on-current tuning effect by SiO2 passivation layer is more significant for CNT TFTs with longer channel length than those with shorter channel length. Moreover, a positive correlation between the tuning efficiency and the thickness of passivation layer is concluded from experiments.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125125897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Noise modeling of nanomechanical communication systems","authors":"Ahmed O. Nasif, M. Mahfuz, Jagadeep Thota","doi":"10.1109/NANO.2017.8117477","DOIUrl":"https://doi.org/10.1109/NANO.2017.8117477","url":null,"abstract":"In a recent paper [2], we introduced a framework for performing nanomechanical communication, where nanomechanical systems can communicate using mechanical movements to encode and transfer information between a transmitter (TX) and a receiver (RX). The framework considered in [2] was mainly focused on the deterministic model, which is the noise-free case. It was shown that the encoding of movements or motions is key to the transfer of information. In this paper, we address how noise affects such a communication system. We introduce two modes of NMC: synchronous versus asynchronous. We show that synchronous mode can achieve higher transmission rates compared to asynchronous mode. As an example, the symbol error rate expression for a transmitter-receiver pair with 4 degrees of motion is given by analyzing the different motion state transitions.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125555521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shane Colbum, A. Zhan, A. Majumdar, S. Deshmukh, E. Pop, J. Myers, J. Frantz
{"title":"Active metasurfaces based on phase-change memory material digital metamolecules","authors":"Shane Colbum, A. Zhan, A. Majumdar, S. Deshmukh, E. Pop, J. Myers, J. Frantz","doi":"10.1109/NANO.2017.8117284","DOIUrl":"https://doi.org/10.1109/NANO.2017.8117284","url":null,"abstract":"Tunable metasurfaces are a promising candidate for the next generation of spatial light modulators which will require higher refresh rates, smaller pixel sizes, and compact form factors. Phase-change memory materials present a unique platform for nonvolatile reconfigurable metasurfaces which could undergo phase transitions at MHz frequencies if actuated electrically, more than three orders of magnitude higher than refresh rates of existing commercial SLMs. While stable intermediate phases of GeSbTe (GST) exist which can be used for imparting differential phase shifts, the stochasticity of the material properties would limit the robustness of such a phase shifter, whereas the fully crystalline and amorphous states exhibit more consistent behavior. To overcome this, we design GST digital metamolecules comprising constituent meta-atoms which individually are in either the SET or RESET state, but which together form a tunable metamolecule with a set of robust phase shifts. We simulate active metasurface lenses based on these metamolecules, showing successful focusing, and demonstrate nano-patterning of a GST film with isolated nanoposts of material which could be electrically actuated, unlike counterparts which must be optically reconfigured.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130271361","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Dissipation in neuromorphic computing: Fundamental bounds for feedforward networks","authors":"N. Ganesh, N. Anderson","doi":"10.1109/NANO.2017.8117441","DOIUrl":"https://doi.org/10.1109/NANO.2017.8117441","url":null,"abstract":"We present the fundamental lower bound on dissipation in feedforward neural networks associated with the combined cost of the training and testing phases. Finite state automata descriptions of output generation and the weight updates during training, are used to derive the corresponding lower bounds in a physically grounded manner. The results are illustrated using a simple perceptron learning the AND classification task. The effects of the learning rate parameter and input probability distribution on the cost of dissipation are studied. Derivation of neural network learning algorithms that minimize the total dissipation cost of training are explored.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129728276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of contact resistance of TiN-TiN contacts for nanoswitches","authors":"Changho Oh, M. D. de Boer","doi":"10.1109/NANO.2017.8117374","DOIUrl":"https://doi.org/10.1109/NANO.2017.8117374","url":null,"abstract":"Nano-electromechanical (NEM) are of interest to address the static and/or dynamic power loss challenges [1]-[4] in digital logic applications. Such mechanical switches prevent any leakage current from forming an air gap that separates the electrical contacts when the device is in the OFF state. The subthreshold swing can also be effectively reduced to less than 1 mV/decade [5], which can further reduce the power consumption. NEM switches can potentially operate at ∼1 mV and will consume up to ∼106 times less power than MOSFETs. Therefore, a fundamental understanding of NEM switches in terms of operation, reliability, and integration in IC applications is necessary for achieving ultra-low power computing.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124535789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Improving the immunity of SET/MOS hybrid A/D converters using Boltzmann machine networks","authors":"Zihan Zhang, Chunhong Chen","doi":"10.1109/NANO.2017.8117259","DOIUrl":"https://doi.org/10.1109/NANO.2017.8117259","url":null,"abstract":"Single-electron-transistor (SET)/MOS hybrid architectures greatly simplify the design of traditional A/D converters, but are quite unreliable due to random background charges. We propose a method of implementing Boltzmann machine networks on hybrid ADCs for the improved immunity against background charges. The self-regulation with Boltzmann machines enables the digital outputs of ADC to converge to a stable state when a simulated annealing process is applied. Simulation results with a 3-bit ADC are provided to show the effectiveness of the proposed structure. A possible structure for the higher resolution of ADCs is also presented.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131286890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Brownian particle considering nonrigidity of matter — A Langevin equation approach","authors":"S. Shringi, N. N. Sharma","doi":"10.1109/NANO.2017.8117256","DOIUrl":"https://doi.org/10.1109/NANO.2017.8117256","url":null,"abstract":"Brownian motion had been a topic of interest since the last two centuries and researchers have investigated the motion considering size, environment and mass. Few attempts considering the non-rigidity had been published to establish correlation between variance and nanoparticle parameter like size, mass and non-rigidity (stiffness) [1] [2]. In continuation, the present work investigates the significance of non-rigidity (stiffness) on variance in motion of nanoparticle. This work is important to conclude on whether soft nanoparticle moves more or less vis-à-vis a hard nanoparticle. We developed a model using correlation technique applied on Langevin equation for Brownian motion of nanoparticle and based on the simulation results, it was found that the motion is significantly governed by the stiffness of nanoparticles.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128677762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Versatile upconversion surfaces evaluation platform for bio-nano surface selection for nervous system","authors":"L. Fu, B. Shi, D. Jin, R. Chung","doi":"10.1109/NANO.2017.8117391","DOIUrl":"https://doi.org/10.1109/NANO.2017.8117391","url":null,"abstract":"Neurodegenerative disorder diseases have been perplexing physicians and scientists for many years. There is considerable interest in developing diagnostic nanotools for diagnosis and therapeutic treatment strategies for the neuron diseases. However, a key challenge remains in selection of suitable surface to overcome the nano-bio interface issue as many nanoparticles indicate instability when administered into biological environments and show serious cytotoxicity to sensitive central nervous system. We have developed new-generation upconversion nanoparticles (UCNPs) which represent a promising model nanoparticle for suitable evaluation due to its superior properties in bio photonics.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128736092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}