Dissipation in neuromorphic computing: Fundamental bounds for feedforward networks

N. Ganesh, N. Anderson
{"title":"Dissipation in neuromorphic computing: Fundamental bounds for feedforward networks","authors":"N. Ganesh, N. Anderson","doi":"10.1109/NANO.2017.8117441","DOIUrl":null,"url":null,"abstract":"We present the fundamental lower bound on dissipation in feedforward neural networks associated with the combined cost of the training and testing phases. Finite state automata descriptions of output generation and the weight updates during training, are used to derive the corresponding lower bounds in a physically grounded manner. The results are illustrated using a simple perceptron learning the AND classification task. The effects of the learning rate parameter and input probability distribution on the cost of dissipation are studied. Derivation of neural network learning algorithms that minimize the total dissipation cost of training are explored.","PeriodicalId":292399,"journal":{"name":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2017.8117441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present the fundamental lower bound on dissipation in feedforward neural networks associated with the combined cost of the training and testing phases. Finite state automata descriptions of output generation and the weight updates during training, are used to derive the corresponding lower bounds in a physically grounded manner. The results are illustrated using a simple perceptron learning the AND classification task. The effects of the learning rate parameter and input probability distribution on the cost of dissipation are studied. Derivation of neural network learning algorithms that minimize the total dissipation cost of training are explored.
神经形态计算中的耗散:前馈网络的基本边界
我们给出了前馈神经网络中与训练阶段和测试阶段的综合代价相关的耗散的基本下界。在训练过程中,使用输出生成的有限状态自动机描述和权重更新,以物理接地的方式导出相应的下界。使用一个简单的感知器学习AND分类任务来说明结果。研究了学习率参数和输入概率分布对耗散代价的影响。探讨了最小化训练总耗散代价的神经网络学习算法的推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信