Journal of Vacuum Science & Technology B最新文献

筛选
英文 中文
Integrated silicon electron source for high vacuum microelectromechanical system devices 用于高真空微机电系统设备的集成硅电子源
Journal of Vacuum Science & Technology B Pub Date : 2024-03-01 DOI: 10.1116/6.0003385
M. Krysztof, Paweł Miera, Paweł Urbański, T. Grzebyk, M. Hausladen, Rupert Schreiner
{"title":"Integrated silicon electron source for high vacuum microelectromechanical system devices","authors":"M. Krysztof, Paweł Miera, Paweł Urbański, T. Grzebyk, M. Hausladen, Rupert Schreiner","doi":"10.1116/6.0003385","DOIUrl":"https://doi.org/10.1116/6.0003385","url":null,"abstract":"The article presents the process of developing a silicon electron source designed for high-vacuum microelectromechanical system (HV MEMS) devices, i.e., MEMS electron microscope and MEMS x-ray source. Technological constraints and issues of such an electron source are explained. The transition from emitters made of carbon nanotubes to emitters made of pure silicon is described. Overall, the final electron source consists of a silicon tip emitter and a silicon gate electrode integrated on the same glass substrate. The source generates an electron beam without any carbon nanotube coverage. It generates a high and stable electron current and works after the final bonding process of an HV MEMS device.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"122 24","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140088146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improved optical and electrical response by glancing angle synthesized Al2O3 nanorod array device 通过闪烁角合成 Al2O3 纳米棒阵列器件改善光电响应
Journal of Vacuum Science & Technology B Pub Date : 2024-03-01 DOI: 10.1116/6.0003416
Abhijit Das, N. K. Singh, Laishram Robindro Singh, M. Sarkar
{"title":"Improved optical and electrical response by glancing angle synthesized Al2O3 nanorod array device","authors":"Abhijit Das, N. K. Singh, Laishram Robindro Singh, M. Sarkar","doi":"10.1116/6.0003416","DOIUrl":"https://doi.org/10.1116/6.0003416","url":null,"abstract":"An Aluminum Oxide (Al2O3) nanorod (NR) array–based device has been synthesized upon an Al2O3 thin film (TF) by electron beam (E-beam) evaporation with a glancing angle deposition technique. The complete fabrication has been done inside a vacuum coating unit. The Al2O3 nanostructures have been fabricated on a silicon substrate. Field emission scanning electron microscopy and transmission electron microscopy show a vertically aligned Al2O3 NR array. From the Tauc plot, the optical band energies are estimated as 5 eV and 5.5 eV for the bare Al2O3 TF and Al2O3 NR/Al2O3 TF devices, respectively. Significant improvement has been observed in photosensitivity by 10 fold, detectivity by 4.2 fold, and noise equivalent power (NEP) by 16.5 fold for the Al2O3 NR/Al2O3 TF device compared with the Al2O3 TF. The Al2O3 NR/Al2O3 TF device exhibits a very fast photoswitching response (rise time = 0.15 s and fall time = 0.13 s). Therefore, the Al2O3 NR/Al2O3 TF device proves to be a prominent candidate for next-generation optoelectronic device applications.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"148 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140275939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Simulation of the time-dependent propagation of leak-triggered helium density gradients in cryogenic and nonisothermal accelerator vacuum systems 低温和非等温加速器真空系统中泄漏触发的氦密度梯度随时间变化的传播模拟
Journal of Vacuum Science & Technology B Pub Date : 2024-03-01 DOI: 10.1116/6.0003330
Stefan Wilfert, F. Chill
{"title":"Simulation of the time-dependent propagation of leak-triggered helium density gradients in cryogenic and nonisothermal accelerator vacuum systems","authors":"Stefan Wilfert, F. Chill","doi":"10.1116/6.0003330","DOIUrl":"https://doi.org/10.1116/6.0003330","url":null,"abstract":"A novel simulation code for the calculation of the time-dependent evolution of helium density profiles in tubular-shaped beam vacuum systems of particle accelerators is presented. The code called TransVac was written in the statistics programming language R using the noncommercial development software RStudio and is based on an analytical approach. In contrast to earlier simulation tools based on analytical computational methods, the new code does not only master the profile calculation in conventional vacuum systems operated at room temperature, but also in fully cryogenic and in nonisothermal systems composed of cryogenic and warm sections. Data of helium adsorption isotherms are used to calculate gas densities profiles in cold vacuum systems with the cryosorption-based wall-pumping effect. The article discusses how the simulation code works and which mathematical algorithm is used. Comparisons between experimental and theoretical data confirm that the software developed provides sufficiently reliable predictions on the propagation behavior of leak-triggered helium pressure waves in cryogenic and room-temperature vacuum systems as well.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140282694","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low power silicon evaporation source—Construction, performances, and applications 低功率硅蒸发源--构造、性能和应用
Journal of Vacuum Science & Technology B Pub Date : 2024-03-01 DOI: 10.1116/6.0003284
S. Kovalchuk, M. Nowicki, I. Morawski
{"title":"Low power silicon evaporation source—Construction, performances, and applications","authors":"S. Kovalchuk, M. Nowicki, I. Morawski","doi":"10.1116/6.0003284","DOIUrl":"https://doi.org/10.1116/6.0003284","url":null,"abstract":"The construction of a low power silicon evaporation source for thin film deposition applications is proposed in this article. A few differently shaped tungsten filaments were mounted inside a quartz glass crucible, which assured an effective heating of silicon wafer pieces. The sublimation process was monitored at filament powers in the range of 8–22 W, which corresponds to temperatures far below the melting point of Si. The operation of the evaporation source requires only the use of a low voltage power supply. All considered models of evaporation sources are characterized by an easy construction. The measurements carried out with the use of a quartz crystal microbalance sensor enabled to determine the deposition rate at different filament powers for all constructed Si sources and confirm the long-term stability of the silicon flux. The experimental data exhibit the Polany–Wigner dependence of the deposition rate as a function of inverse of power at higher filament powers. Auger electron spectroscopy was used to monitor the deposition of Si on Ag(100) under constant silicon flux. The Auger signal recorded from Si and Ag reflects the growth of subsequent silicon layers. This enabled the determination of the Frank–van der Merwe growth mode of Si on Ag(100) at early stages of growth, the formation time of one Si monolayer, and, thus, the deposition rate. The presented designs of the Si source exhibit long time stable evaporation fully controlled by the applied filament power, which is crucial in the precise adsorption of ultrathin Si layers.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"7 20","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140269922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of slanted gratings by using glancing angle deposition 利用闪烁角沉积法制作斜光栅
Journal of Vacuum Science & Technology B Pub Date : 2024-03-01 DOI: 10.1116/6.0003479
Hongwen Wu, Aixi Pan, Chenxu Zhu, Bo Cui
{"title":"Fabrication of slanted gratings by using glancing angle deposition","authors":"Hongwen Wu, Aixi Pan, Chenxu Zhu, Bo Cui","doi":"10.1116/6.0003479","DOIUrl":"https://doi.org/10.1116/6.0003479","url":null,"abstract":"Slanted gratings, commonly used for manipulating light in various applications, are typically fabricated using conventional top-down methods. However, these methods have limitations on material choice. This paper explores the use of glancing angle deposition (GLAD) to fabricate slanted gratings with various materials and slant angles on silicon (Si) and quartz (SiO2) substrates. The process involves the first step of creating a template using electron beam lithography, lift-off, and dry etching, and the second step of electron beam evaporation at a glancing angle on the prefabricated template. The template consists of grating structures with very shallow trenches. Different materials, such as chromium (Cr), copper (Cu), aluminum oxide (Al2O3), and titanium oxide (TiO2), were used in the GLAD process to create slanted grating structures on Si or SiO2 substrates, showcasing their versatility. Here, the formation of the slanted grating is due to the shadowing effect that leads to deposition onto the protruded grating lines but not into the trench. Using TiO2 as the source material, the GLAD technique can produce slanted gratings with various angles by adjusting the deposition angle. The optical characteristics of the slanted grating prepared using GLAD were verified through simulations with COMSOL software, confirming its excellent light guide performance.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"750 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140273219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-area fabrication of nanometer-scale features on GaN using e-beam lithography 利用电子束光刻技术在氮化镓上大面积制造纳米级特征
Journal of Vacuum Science & Technology B Pub Date : 2024-02-27 DOI: 10.1116/6.0003270
F. Yasar, Richard E. Muller, A. Khoshakhlagh, S. Keo
{"title":"Large-area fabrication of nanometer-scale features on GaN using e-beam lithography","authors":"F. Yasar, Richard E. Muller, A. Khoshakhlagh, S. Keo","doi":"10.1116/6.0003270","DOIUrl":"https://doi.org/10.1116/6.0003270","url":null,"abstract":"This paper presents a time- and cost-effective method for the large-area fabrication of photonic crystals with nanometer-scale features on the GaN material. The proposed technique utilizes e-beam lithography and double hard mask layers to enable the high aspect ratio etching of the nanoscale features. The double hard mask layer, which is a photoresist, platinum (Pt) and SiO2, is very strong against plasma etching, making it an effective barrier layer to protect the underlying material during the etching process. The fabricated photonic crystal exhibits a high aspect ratio and excellent uniformity over a large area. This technique can be used for the time-effective production of photonic crystals for various applications such as optical sensing, spectroscopy, and telecommunications. The method presented in this paper can also be extended to other material systems beyond GaN. The proposed approach provides a promising route to achieve the large-area fabrication of nanometer-scale structures with high aspect ratios using e-beam lithography.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"22 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140426626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable and low loss oxide layer on α-Ta (110) film for superconducting qubits α-Ta(110)薄膜上用于超导量子比特的稳定低损耗氧化物层
Journal of Vacuum Science & Technology B Pub Date : 2024-02-26 DOI: 10.1116/6.0003368
Zengqian Ding, Boyi Zhou, Tao Wang, Lina Yang, Yanfu Wu, Xiao Cai, Kanglin Xiong, Jiagui Feng
{"title":"Stable and low loss oxide layer on α-Ta (110) film for superconducting qubits","authors":"Zengqian Ding, Boyi Zhou, Tao Wang, Lina Yang, Yanfu Wu, Xiao Cai, Kanglin Xiong, Jiagui Feng","doi":"10.1116/6.0003368","DOIUrl":"https://doi.org/10.1116/6.0003368","url":null,"abstract":"The presence of amorphous oxide layers can significantly affect the coherent time of superconducting qubits due to their high dielectric loss. Typically, the surface oxides of superconductor films exhibit lossy and unstable behavior when exposed to air. To increase the coherence time, it is essential for qubits to have stable and low dielectric loss oxides, either as barrier or passivation layers. In this study, we highlight the robust and stable nature of an amorphous tantalum oxide layer formed on α-Ta (110) film by employing chemical and structural analyses. Such kind of oxide layer forms in a self-limiting process on the surface of α-Ta (110) film in piranha solution, yielding stable thickness and steady chemical composition. Quarter-wavelength coplanar waveguide resonators are made to study the loss of this oxide. One resonator has a Qi of 3.0 × 106 in the single photon region. The Qi of most devices are higher than 2.0 × 106. Moreover, most of them are still over 1 × 106 even after exposed to air for months. Based on these findings, we propose an all-tantalum superconducting qubit utilizing such oxide as passivation layers, which possess low dielectric loss and improved stability.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"30 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140431761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance evaluation of atomic layer deposited TiO2/TiN nanolaminates used as infrared photodetectors 用作红外光探测器的原子层沉积 TiO2/TiN 纳米层压材料的性能评估
Journal of Vacuum Science & Technology B Pub Date : 2024-02-21 DOI: 10.1116/6.0003139
G. Scarel, O. Kokhan, V. D. Wheeler
{"title":"Performance evaluation of atomic layer deposited TiO2/TiN nanolaminates used as infrared photodetectors","authors":"G. Scarel, O. Kokhan, V. D. Wheeler","doi":"10.1116/6.0003139","DOIUrl":"https://doi.org/10.1116/6.0003139","url":null,"abstract":"We study the interaction with photodetectors of near infrared (NIR) laser light with power P in the range of mW and period τ = 3.55 fs (wavelength λ = 1064 nm, frequency ν = 0.28 PHz). We fabricate the photodetectors by depositing different sequences of thin TiO2/TiN nano-laminates onto glass substrates using atomic layer deposition (ALD). To evaluate the photodetector's performance, we assume Pτ to be the energy transferred to them from NIR laser light, allowing us to extract the photodetector's inductance L at zero bias voltage, and to explicitly link P to the photocurrent ΔI, or photovoltage ΔV, generated by the photodetector. Such a link is observed in the literature, but not justified. We further assume Pλ = P λ/lact to be the effective power illuminating the photodetector with size lact. This assumption enables us to determine the photodetector's current responsivity (πI), noise equivalent power (NEP), and detectivity (D). To establish whether Pτ and Pλ correctly account for the energy and the power involved in the photodetector's interaction with light, we compare L, πI, NEP, and D of our photodetectors to the corresponding parameters of state-of-the-art (SOA) devices reported in the literature. The comparison indicates that the L, πI, NEP, and D of our photodetectors are in the range of SOA devices, thus validating our assumptions on Pτ and Pλ. Finally, our findings provide suggestions on how to improve thin ALD TiO2/TiN nano-laminates as suitable active materials in photodetectors.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"7 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140444876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High current field emission from Si nanowires on pillar structures 柱状结构硅纳米线的大电流场发射
Journal of Vacuum Science & Technology B Pub Date : 2024-02-21 DOI: 10.1116/6.0003384
P. Buchner, M. Hausladen, M. Bartl, M. Bachmann, R. Schreiner
{"title":"High current field emission from Si nanowires on pillar structures","authors":"P. Buchner, M. Hausladen, M. Bartl, M. Bachmann, R. Schreiner","doi":"10.1116/6.0003384","DOIUrl":"https://doi.org/10.1116/6.0003384","url":null,"abstract":"We investigate the influence of the geometry and doping level on the performance of n-type silicon nanowire field emitters on silicon pillar structures. Therefore, multiple cathodes with 50 by 50 pillar arrays (diameter: 5 μm, height: 30 μm, spacing: 50 μm) were fabricated and measured in diode configuration. In the first experiment, we compared two geometry types using the same material. Geometry 1 is black silicon, which is a highly dense surface covering a forest of tightly spaced silicon needles resulting from self-masking during a plasma etching process of single crystal silicon. Geometry 2 are silicon nanowires, which are individual spaced-out nanowires in a crownlike shape resulting from a plasma etching process of single crystal silicon. In the second experiment, we compared two different silicon doping levels [n-type (P), 1–10 and <0.005 Ω cm] for the same geometry. The best performance was achieved with lower doped silicon nanowire samples, emitting 2 mA at an extraction voltage of 1 kV. The geometry/material combination with the best performance was used to assemble an integrated electron source. These electron sources were measured in a triode configuration and reached onset voltages of about 125 V and emission currents of 2.5 mA at extraction voltages of 400 V, while achieving electron transmission rates as high as 85.0%.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science &amp; Technology B","volume":"19 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140443240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Room temperature inductively coupled plasma etching of InP with Cl2 mixtures using SiO2 and photoresist masks 使用二氧化硅和光刻胶掩模,用 Cl2 混合物对 InP 进行室温电感耦合等离子体刻蚀
Journal of Vacuum Science &amp; Technology B Pub Date : 2024-02-14 DOI: 10.1116/6.0003295
Qingyue Li, Claire Deeb, Hélène Debregeas, J. Pelouard
{"title":"Room temperature inductively coupled plasma etching of InP with Cl2 mixtures using SiO2 and photoresist masks","authors":"Qingyue Li, Claire Deeb, Hélène Debregeas, J. Pelouard","doi":"10.1116/6.0003295","DOIUrl":"https://doi.org/10.1116/6.0003295","url":null,"abstract":"We report the results of a study on the inductively coupled plasma (ICP) etching of InP at room temperature using Cl2 mixtures (Cl2/N2/H2). The impact of different process parameters, including the RF power, the ICP power, the ion-to-neutral ratio, and the chamber pressure, on the etched profile was investigated. The etch rate, selectivity, and anisotropy of the profile were depicted for each etching recipe. Two types of masks, such as SiO2 and AZ5214 photoresist, were used in this study. The etched InP feature showed a very smooth surface (rms as low as 0.5 nm) and a relatively fast etch rate of about 450 nm/min with both masks. By adjusting the etch process and depending on the used mask, we tuned the anisotropy from about 19° to 60°. A selectivity of around 4:1 and 1:1 was obtained with SiO2 and photoresist masks, respectively. These results demonstrate how altering the ICP process parameters could affect the etching characteristics and profile.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science &amp; Technology B","volume":"114 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139837235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信