Abhijit Das, N. K. Singh, Laishram Robindro Singh, M. Sarkar
{"title":"通过闪烁角合成 Al2O3 纳米棒阵列器件改善光电响应","authors":"Abhijit Das, N. K. Singh, Laishram Robindro Singh, M. Sarkar","doi":"10.1116/6.0003416","DOIUrl":null,"url":null,"abstract":"An Aluminum Oxide (Al2O3) nanorod (NR) array–based device has been synthesized upon an Al2O3 thin film (TF) by electron beam (E-beam) evaporation with a glancing angle deposition technique. The complete fabrication has been done inside a vacuum coating unit. The Al2O3 nanostructures have been fabricated on a silicon substrate. Field emission scanning electron microscopy and transmission electron microscopy show a vertically aligned Al2O3 NR array. From the Tauc plot, the optical band energies are estimated as 5 eV and 5.5 eV for the bare Al2O3 TF and Al2O3 NR/Al2O3 TF devices, respectively. Significant improvement has been observed in photosensitivity by 10 fold, detectivity by 4.2 fold, and noise equivalent power (NEP) by 16.5 fold for the Al2O3 NR/Al2O3 TF device compared with the Al2O3 TF. The Al2O3 NR/Al2O3 TF device exhibits a very fast photoswitching response (rise time = 0.15 s and fall time = 0.13 s). Therefore, the Al2O3 NR/Al2O3 TF device proves to be a prominent candidate for next-generation optoelectronic device applications.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"148 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved optical and electrical response by glancing angle synthesized Al2O3 nanorod array device\",\"authors\":\"Abhijit Das, N. K. Singh, Laishram Robindro Singh, M. Sarkar\",\"doi\":\"10.1116/6.0003416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An Aluminum Oxide (Al2O3) nanorod (NR) array–based device has been synthesized upon an Al2O3 thin film (TF) by electron beam (E-beam) evaporation with a glancing angle deposition technique. The complete fabrication has been done inside a vacuum coating unit. The Al2O3 nanostructures have been fabricated on a silicon substrate. Field emission scanning electron microscopy and transmission electron microscopy show a vertically aligned Al2O3 NR array. From the Tauc plot, the optical band energies are estimated as 5 eV and 5.5 eV for the bare Al2O3 TF and Al2O3 NR/Al2O3 TF devices, respectively. Significant improvement has been observed in photosensitivity by 10 fold, detectivity by 4.2 fold, and noise equivalent power (NEP) by 16.5 fold for the Al2O3 NR/Al2O3 TF device compared with the Al2O3 TF. The Al2O3 NR/Al2O3 TF device exhibits a very fast photoswitching response (rise time = 0.15 s and fall time = 0.13 s). Therefore, the Al2O3 NR/Al2O3 TF device proves to be a prominent candidate for next-generation optoelectronic device applications.\",\"PeriodicalId\":282302,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology B\",\"volume\":\"148 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003416\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003416","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved optical and electrical response by glancing angle synthesized Al2O3 nanorod array device
An Aluminum Oxide (Al2O3) nanorod (NR) array–based device has been synthesized upon an Al2O3 thin film (TF) by electron beam (E-beam) evaporation with a glancing angle deposition technique. The complete fabrication has been done inside a vacuum coating unit. The Al2O3 nanostructures have been fabricated on a silicon substrate. Field emission scanning electron microscopy and transmission electron microscopy show a vertically aligned Al2O3 NR array. From the Tauc plot, the optical band energies are estimated as 5 eV and 5.5 eV for the bare Al2O3 TF and Al2O3 NR/Al2O3 TF devices, respectively. Significant improvement has been observed in photosensitivity by 10 fold, detectivity by 4.2 fold, and noise equivalent power (NEP) by 16.5 fold for the Al2O3 NR/Al2O3 TF device compared with the Al2O3 TF. The Al2O3 NR/Al2O3 TF device exhibits a very fast photoswitching response (rise time = 0.15 s and fall time = 0.13 s). Therefore, the Al2O3 NR/Al2O3 TF device proves to be a prominent candidate for next-generation optoelectronic device applications.